Open Access

The promising role of epigenetic mediators and microRNAs in the early diagnosis of cholangiocarcinoma (Review)

  • Authors:
    • Vikrant Rai
    • Chandra S. Boosani
    • Devendra K. Agrawal
  • View Affiliations

  • Published online on: August 9, 2019     https://doi.org/10.3892/wasj.2019.18
  • Pages: 165-176
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Cholangiocarcinoma (CC) is a highly lethal malignant tumor which arises from the biliary tract epithelium and is notoriously difficult to diagnose. Common risk factors for CC are primary sclerosing cholangitis, liver fluke infestation and hepatolithiasis. Although CCs are relatively uncommon tumors, the worldwide rising incidences and mortality rate for intrahepatic CC (ICC) renders it a disease of interest for research. CCs are usually fatal due to the typically late clinical presentation and the lack of effective non‑surgical therapeutic modalities. The overall survival rate, including following tumor resection, is poor with <5% of patients surviving 5 years and this rate has not significantly improved over the past 30 years. Thus, there is a need to diagnose CC at an early stage, and advances in immunohistochemistry, molecular genetics, pharmacogenomics and personalized medicine may aid in the study of the pathological basis of CC at the gene and protein level. Understanding the genetic and proteomic alterations in CC would not only increase the therapeutic efficacy, but would also provide a better treatment strategy. Epigenetic alterations that induce gene expression in cancers have been well established. Among the epigenetic mechanisms, targeting DNA hypermethylation and histone deacetylation with DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors has been reported in a number of cancer types. In CC, targeting the epigenetic pathways appears to be a promising approach for treatment. This review aims to provide a comprehensive overview of the putative role of epigenetic alterations and proteomic alterations in CC. Furthermore, the role of these alterations in early diagnosis, as prognostic markers, and therapeutics for better treatment strategies will be highlighted.

References

1 

Vauthey JN and Blumgart LH: Recent advances in the management of cholangiocarcinomas. Semin Liver Dis. 14:109–114. 1994.PubMed/NCBI View Article : Google Scholar

2 

Lazaridis KN and Gores GJ: Cholangiocarcinoma. Gastroenterology. 128:1655–1667. 2005.PubMed/NCBI View Article : Google Scholar

3 

Khan SA, Davidson BR, Goldin R, Pereira SP, Rosenberg WM, Taylor-Robinson SD, Thillainayagam AV, Thomas HC, Thursz MR and Wasan H: British Society of Gastroenterology: Guidelines for the diagnosis and treatment of cholangiocarcinoma: Consensus document. Gut ٦. (Suppl 51):VI1–9. 2002.PubMed/NCBI View Article : Google Scholar

4 

Sandhu DS, Shire AM and Roberts LR: Epigenetic DNA hypermethylation in cholangiocarcinoma: Potential roles in pathogenesis, diagnosis and identification of treatment targets. Liver Int. 28:12–27. 2008.PubMed/NCBI View Article : Google Scholar

5 

Shaib Y and El-Serag HB: The epidemiology of cholangiocarcinoma. Semin Liver Dis. 24:115–125. 2004.PubMed/NCBI View Article : Google Scholar

6 

Limpaiboon T: Epigenetic aberrations in cholangiocarcinoma: Potential biomarkers and promising target for novel therapeutic strategies. Asian Pac J Cancer Prev. 13 (Suppl):S41–S45. 2012.PubMed/NCBI

7 

Khan SA, Taylor-Robinson SD, Toledano MB, Beck A, Elliott P and Thomas HC: Changing international trends in mortality rates for liver, biliary and pancreatic tumours. J Hepatol. 37:806–813. 2002.PubMed/NCBI View Article : Google Scholar

8 

Patel T: Worldwide trends in mortality from biliary tract malignancies. BMC Cancer. 2(10)2002.PubMed/NCBI View Article : Google Scholar

9 

Shaib YH, Davila JA, McGlynn K and El-Serag HB: Rising incidence of intrahepatic cholangiocarcinoma in the United States: A true increase? J Hepatol. 40:472–477. 2004.PubMed/NCBI View Article : Google Scholar

10 

Rosai J: Ackerman's Surgical Pathology. Vol 2. 8th edition. Mosby. pp982–989. 1996.

11 

Rea DJ, Heimbach JK, Rosen CB, Haddock MG, Alberts SR, Kremers WK, Gores GJ and Nagorney DM: Liver transplantation with neoadjuvant chemoradiation is more effective than resection for hilar cholangiocarcinoma. Ann Surg. 242:451–458; discussion 458-461. 2005.PubMed/NCBI View Article : Google Scholar

12 

Patel AH, Harnois DM, Klee GG, LaRusso NF and Gores GJ: The utility of CA 19-9 in the diagnoses of cholangiocarcinoma in patients without primary sclerosing cholangitis. Am J Gastroenterol. 95:204–207. 2000.PubMed/NCBI View Article : Google Scholar

13 

Maroni L, Pierantonelli I, Banales JM, Benedetti A and Marzioni M: The significance of genetics for cholangiocarcinoma development. Ann Transl Med. 1(28)2013.PubMed/NCBI View Article : Google Scholar

14 

Sheffield BS, Tessier-Cloutier B, Li-Chang H, Shen Y, Pleasance E, Kasaian K, Li Y, Jones SJ, Lim HJ, Renouf DJ, et al: Personalized oncogenomics in the management of gastrointestinal carcinomas-early experiences from a pilot study. Curr Oncol. 23:e571–e575. 2016.PubMed/NCBI View Article : Google Scholar

15 

Ashkenazi R, Gentry SN and Jackson TL: Pathways to tumorigenesis-modeling mutation acquisition in stem cells and their progeny. Neoplasia. 10:1170–1182. 2008.PubMed/NCBI View Article : Google Scholar

16 

Hanahan D and Weinberg RA: The hallmarks of cancer. Cell. 100:57–70. 2000.PubMed/NCBI View Article : Google Scholar

17 

Berretta M, Cavaliere C, Alessandrini L, Stanzione B, Facchini G, Balestreri L, Perin T and Canzonieri V: Serum and tissue markers in hepatocellular carcinoma and cholangiocarcinoma: Clinical and prognostic implications. Oncotarget. 8:14192–14220. 2017.PubMed/NCBI View Article : Google Scholar

18 

Zhou J, Liu Z, Yang S and Li X: Identification of microRNAs as biomarkers for cholangiocarcinoma detection: A diagnostic meta-analysis. Clin Res Hepatol Gastroenterol. 41:156–162. 2017.PubMed/NCBI View Article : Google Scholar

19 

Rashid A: Cellular and molecular biology of biliary tract cancers. Surg Oncol Clin N Am. 11:995–1009. 2002.PubMed/NCBI

20 

Lee S, Kim WH, Jung HY, Yang MH and Kang GH: Aberrant CpG island methylation of multiple genes in intrahepatic cholangiocarcinoma. Am J Pathol. 161:1015–1022. 2002.PubMed/NCBI View Article : Google Scholar

21 

Herman JG and Baylin SB: Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med. 349:2042–2054. 2003.PubMed/NCBI View Article : Google Scholar

22 

Goeppert B, Konermann C, Schmidt CR, Bogatyrova O, Geiselhart L, Ernst C, Gu L, Becker N, Zucknick M, Mehrabi A, et al: Global alterations of DNA methylation in cholangiocarcinoma target the Wnt signaling pathway. Hepatology. 59:544–554. 2014.PubMed/NCBI View Article : Google Scholar

23 

Meng F, Henson R, Lang M, Wehbe H, Maheshwari S, Mendell JT, Jiang J, Schmittgen TD and Patel T: Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology. 130:2113–2129. 2006.PubMed/NCBI View Article : Google Scholar

24 

Kang YK, Kim WH, Lee HW, Lee HK and Kim YI: Mutation of p53 and K-ras, and loss of heterozygosity of APC in intrahepatic cholangiocarcinoma. Lab Invest. 79:477–483. 1999.PubMed/NCBI

25 

Sturm PD, Baas IO, Clement MJ, Nakeeb A, Johan G, Offerhaus A, Hruban RH and Pitt HA: Alterations of the p53 tumor-suppressor gene and K-ras oncogene in perihilar cholangiocarcinomas from a high-incidence area. Int J Cancer. 78:695–698. 1998.PubMed/NCBI View Article : Google Scholar

26 

Kiba T, Tsuda H, Pairojkul C, Inoue S, Sugimura T and Hirohashi S: Mutations of the p53 tumor suppressor gene and the ras gene family in intrahepatic cholangiocellular carcinomas in Japan and Thailand. Mol Carcinog. 8:312–318. 1993.PubMed/NCBI View Article : Google Scholar

27 

Wattanasirichaigoon S, Tasanakhajorn U and Jesadapatarakul S: The incidence of K-ras codon 12 mutations in cholangiocarcinoma detected by polymerase chain reaction technique. J Med Assoc Thai. 81:316–323. 1998.PubMed/NCBI

28 

Ahrendt SA, Eisenberger CF, Yip L, Rashid A, Chow JT, Pitt HA and Sidransky D: Chromosome 9p21 loss and p16 inactivation in primary sclerosing cholangitis-associated cholangiocarcinoma. J Surg Res. 84:88–93. 1999.PubMed/NCBI View Article : Google Scholar

29 

Tannapfel A, Benicke M, Katalinic A, Uhlmann D, Köckerling F, Hauss J and Wittekind C: Frequency of p16(INK4A) alterations and K-ras mutations in intrahepatic cholangiocarcinoma of the liver. Gut. 47:721–727. 2000.PubMed/NCBI View Article : Google Scholar

30 

Sugimachi K, Taguchi K, Aishima S, Tanaka S, Shimada M, Kajiyama K, Sugimachi K and Tsuneyoshi M: Altered expression of beta-catenin without genetic mutation in intrahepatic cholangiocarcinoma. Mod Pathol. 14:900–905. 2001.PubMed/NCBI View Article : Google Scholar

31 

Serrano M, Hannon GJ and Beach D: A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature. 366:704–707. 1993.PubMed/NCBI View Article : Google Scholar

32 

Yang B, House MG, Guo M, Herman JG and Clark DP: Promoter methylation profiles of tumor suppressor genes in intrahepatic and extrahepatic cholangiocarcinoma. Mod Pathol. 18:412–420. 2005.PubMed/NCBI View Article : Google Scholar

33 

Ueki T, Hsing AW, Gao YT, Wang BS, Shen MC, Cheng J, Deng J, Fraumeni JF Jr and Rashid A: Alterations of p16 and prognosis in biliary tract cancers from a population-based study in China. Clin Cancer Res. 10:1717–1725. 2004.PubMed/NCBI View Article : Google Scholar

34 

Tozawa T, Tamura G, Honda T, Nawata S, Kimura W, Makino N, Kawata S, Sugai T, Suto T and Motoyama T: Promoter hypermethylation of DAP-kinase is associated with poor survival in primary biliary tract carcinoma patients. Cancer Sci. 95:736–740. 2004.PubMed/NCBI View Article : Google Scholar

35 

Tannapfel A, Sommerer F, Benicke M, Weinans L, Katalinic A, Geissler F, Uhlmann D, Hauss J and Wittekind C: Genetic and epigenetic alterations of the INK4a-ARF pathway in cholangiocarcinoma. J Pathol. 197:624–631. 2002.PubMed/NCBI View Article : Google Scholar

36 

Sasaki M, Yamaguchi J, Itatsu K, Ikeda H and Nakanuma Y: Over-expression of polycomb group protein EZH2 relates to decreased expression of p16 INK4a in cholangiocarcinogenesis in hepatolithiasis. J Pathol. 215:175–183. 2008.PubMed/NCBI View Article : Google Scholar

37 

Chinnasri P, Pairojkul C, Jearanaikoon P, Sripa B, Bhudhisawasdi V, Tantimavanich S and Limpaiboon T: Preferentially different mechanisms of inactivation of 9p21 gene cluster in liver fluke-related cholangiocarcinoma. Hum Pathol. 40:817–826. 2009.PubMed/NCBI View Article : Google Scholar

38 

Hong SM, Choi J, Ryu K, Ro JY and Yu E: Promoter hypermethylation of the p16 gene and loss of its protein expression is correlated with tumor progression in extrahepatic bile duct carcinomas. Arch Pathol Lab Med. 130:33–38. 2006.PubMed/NCBI View Article : Google Scholar

39 

Wong N, Li L, Tsang K, Lai PB, To KF and Johnson PJ: Frequent loss of chromosome 3p and hypermethylation of RASSF1A in cholangiocarcinoma. J Hepatol. 37:633–639. 2002.PubMed/NCBI View Article : Google Scholar

40 

Abraham SC, Lee JH, Boitnott JK, Argani P, Furth EE and Wu TT: Microsatellite instability in intraductal papillary neoplasms of the biliary tract. Mod Pathol. 15:1309–1317. 2002.PubMed/NCBI View Article : Google Scholar

41 

Limpaiboon T, Khaenam P, Chinnasri P, Soonklang M, Jearanaikoon P, Sripa B, Pairojkul C and Bhudhisawasdi V: Promoter hypermethylation is a major event of hMLH1 gene inactivation in liver fluke related cholangiocarcinoma. Cancer Lett. 217:213–219. 2005.PubMed/NCBI View Article : Google Scholar

42 

Foja S, Goldberg M, Schagdarsurengin U, Dammann R, Tannapfel A and Ballhausen WG: Promoter methylation and loss of coding exons of the fragile histidine triad (FHIT) gene in intrahepatic cholangiocarcinomas. Liver Int. 25:1202–1208. 2005.PubMed/NCBI View Article : Google Scholar

43 

Liu XF, Zhu SG, Zhang H, Xu Z, Su HL, Li SJ and Zhou XT: The methylation status of the TMS1/ASC gene in cholangiocarcinoma and its clinical significance. Hepatobiliary Pancreat Dis Int. 5:449–453. 2006.PubMed/NCBI

44 

Koga Y, Kitajima Y, Miyoshi A, Sato K, Kitahara K, Soejima H and Miyazaki K: Tumor progression through epigenetic gene silencing of O(6)-methylguanine-DNA methyltransferase in human biliary tract cancers. Ann Surg Oncol. 12:354–363. 2005.PubMed/NCBI View Article : Google Scholar

45 

Tischoff I, Markwarth A, Witzigmann H, Uhlmann D, Hauss J, Mirmohammadsadegh A, Wittekind C, Hengge UR and Tannapfel A: Allele loss and epigenetic inactivation of 3p21.3 in malignant liver tumors. Int J Cancer. 115:684–689. 2005.PubMed/NCBI View Article : Google Scholar

46 

Sriraksa R, Zeller C, El-Bahrawy MA, Dai W, Daduang J, Jearanaikoon P, Chau-In S, Brown R and Limpaiboon T: CpG-island methylation study of liver fluke-related cholangiocarcinoma. Br J Cancer. 104:1313–1318. 2011.PubMed/NCBI View Article : Google Scholar

47 

Khaenam P, Jearanaikoon P, Pairojkul C, Bhudhisawasdi V and Limpaiboon T: Genetic and epigenetic alterations of RIZ1 and the correlation to clinicopathological parameters in liver fluke-related cholangiocarcinoma. Exp Ther Med. 1:385–390. 2010.PubMed/NCBI View Article : Google Scholar

48 

Khaenam P, Niibori A, Okada S, Jearanaikoon P, Araki N and Limpaiboon T: Contribution of RIZ1 to regulation of proliferation and migration of a liver fluke-related cholangiocarcinoma cell. Asian Pac J Cancer Prev. 13:4007–4011. 2012.PubMed/NCBI View Article : Google Scholar

49 

Nakanuma Y, Uchida T, Sato Y and Uesaka K: An S100P-positive biliary epithelial field is a preinvasive intraepithelial neoplasm in nodular-sclerosing cholangiocarcinoma. Hum Pathol. 60:46–57. 2017.PubMed/NCBI View Article : Google Scholar

50 

Khorasanizadeh S: The nucleosome: From genomic organization to genomic regulation. Cell. 116:259–272. 2004.PubMed/NCBI View Article : Google Scholar

51 

Berger SL: Histone modifications in transcriptional regulation. Curr Opin Genet Dev. 12:142–148. 2002.PubMed/NCBI View Article : Google Scholar

52 

Grant PA: A tale of histone modifications. Genome Biol. 2(Reviews0003)2001.PubMed/NCBI View Article : Google Scholar

53 

Taby R and Issa JP: Cancer epigenetics. CA Cancer J Clin. 60:376–392. 2010.PubMed/NCBI View Article : Google Scholar

54 

Shukla V, Vaissiere T and Herceg Z: Histone acetylation and chromatin signature in stem cell identity and cancer. Mutat Res. 637:1–15. 2008.PubMed/NCBI View Article : Google Scholar

55 

Esteller M: Epigenetics in cancer. N Engl J Med. 358:1148–1159. 2008.PubMed/NCBI View Article : Google Scholar

56 

Cheung P and Lau P: Epigenetic regulation by histone methylation and histone variants. Mol Endocrinol. 19:563–573. 2005.PubMed/NCBI View Article : Google Scholar

57 

Morine Y, Shimada M, Iwahashi S, Utsunomiya T, Imura S, Ikemoto T, Mori H, Hanaoka J and Miyake H: Role of histone deacetylase expression in intrahepatic cholangiocarcinoma. Surgery. 151:412–419. 2012.PubMed/NCBI View Article : Google Scholar

58 

Baradari V, Höpfner M, Huether A, Schuppan D and Scherübl H: Histone deacetylase inhibitor MS-275 alone or combined with bortezomib or sorafenib exhibits strong antiproliferative action in human cholangiocarcinoma cells. World J Gastroenterol. 13:4458–4466. 2007.PubMed/NCBI View Article : Google Scholar

59 

Xu LN, Wang X and Zou SQ: Effect of histone deacetylase inhibitor on proliferation of biliary tract cancer cell lines. World J Gastroenterol. 14:2578–2581. 2008.PubMed/NCBI View Article : Google Scholar

60 

Bluethner T, Niederhagen M, Caca K, Serr F, Witzigmann H, Moebius C, Mossner J and Wiedmann M: Inhibition of histone deacetylase for the treatment of biliary tract cancer: A new effective pharmacological approach. World J Gastroenterol. 13:4761–4770. 2007.PubMed/NCBI View Article : Google Scholar

61 

Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 116:281–297. 2004.PubMed/NCBI View Article : Google Scholar

62 

Brennecke J, Stark A, Russell RB and Cohen SM: Principles of microRNA-target recognition. PLoS Biol. 3(e85)2005.PubMed/NCBI View Article : Google Scholar

63 

Chuang JC and Jones PA: Epigenetics and microRNAs. Pediatr Res. 61:24R–29R. 2007.PubMed/NCBI View Article : Google Scholar

64 

Ehrlich L, Hall C, Venter J, Dostal D, Bernuzzi F, Invernizzi P, Meng F, Trzeciakowski JP, Zhou T, Standeford H, et al: miR-24 inhibition increases menin expression and decreases cholangiocarcinoma proliferation. Am J Pathol. 187:570–580. 2017.PubMed/NCBI View Article : Google Scholar

65 

Stutes M, Tran S and DeMorrow S: Genetic and epigenetic changes associated with cholangiocarcinoma: From DNA methylation to microRNAs. World J Gastroenterol. 13:6465–6469. 2007.PubMed/NCBI View Article : Google Scholar

66 

Zhang J, Han C and Wu T: MicroRNA-26a promotes cholangiocarcinoma growth by activating β-catenin. Gastroenterology. 143:246–256, e8. 2012.PubMed/NCBI View Article : Google Scholar

67 

Goeppert B, Ernst C, Baer C, Roessler S, Renner M, Mehrabi A, Hafezi M, Pathil A, Warth A, Stenzinger A, et al: Cadherin-6 is a putative tumor suppressor and target of epigenetically dysregulated miR-429 in cholangiocarcinoma. Epigenetics. 11:780–790. 2016.PubMed/NCBI View Article : Google Scholar

68 

Karakatsanis A, Papaconstantinou I, Gazouli M, Lyberopoulou A, Polymeneas G and Voros D: Expression of microRNAs, miR-21, miR-31, miR-122, miR-145, miR-146a, miR-200c, miR-221, miR-222, and miR-223 in patients with hepatocellular carcinoma or intrahepatic cholangiocarcinoma and its prognostic significance. Mol Carcinog. 52:297–303. 2013.PubMed/NCBI View Article : Google Scholar

69 

Braconi C, Huang N and Patel T: MicroRNA-dependent regulation of DNA methyltransferase-1 and tumor suppressor gene expression by interleukin-6 in human malignant cholangiocytes. Hepatology. 51:881–890. 2010.PubMed/NCBI View Article : Google Scholar

70 

Zeng B, Li Z, Chen R, Guo N, Zhou J, Zhou Q, Lin Q, Cheng D, Liao Q, Zheng L and Gong Y: Epigenetic regulation of miR-124 by hepatitis C virus core protein promotes migration and invasion of intrahepatic cholangiocarcinoma cells by targeting SMYD3. FEBS Lett. 586:3271–3278. 2012.PubMed/NCBI View Article : Google Scholar

71 

Li B, Han Q, Zhu Y, Yu Y, Wang J and Jiang X: Down-regulation of miR-214 contributes to intrahepatic cholangiocarcinoma metastasis by targeting Twist. FEBS J. 279:2393–2398. 2012.PubMed/NCBI View Article : Google Scholar

72 

Scott GK, Mattie MD, Berger CE, Benz SC and Benz CC: Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res. 66:1277–1281. 2006.PubMed/NCBI View Article : Google Scholar

73 

Valeri N, Vannini I, Fanini F, Calore F, Adair B and Fabbri M: Epigenetics, miRNAs, and human cancer: A new chapter in human gene regulation. Mamm Genome. 20:573–580. 2009.PubMed/NCBI View Article : Google Scholar

74 

Han L, Witmer PD, Casey E, Valle D and Sukumar S: DNA methylation regulates MicroRNA expression. Cancer Biol Ther. 6:1284–1288. 2007.PubMed/NCBI View Article : Google Scholar

75 

Schmitt AM and Chang HY: Long noncoding RNAs in cancer pathways. Cancer Cell. 29:452–463. 2016.PubMed/NCBI View Article : Google Scholar

76 

Wang WT, Ye H, Wei PP, Han BW, He B, Chen ZH and Chen YQ: LncRNAs H19 and HULC, activated by oxidative stress, promote cell migration and invasion in cholangiocarcinoma through a ceRNA manner. J Hematol Oncol. 9(117)2016.PubMed/NCBI View Article : Google Scholar

77 

Yang W, Li Y, Song X, Xu J and Xie J: Genome-wide analysis of long noncoding RNA and mRNA co-expression profile in intrahepatic cholangiocarcinoma tissue by RNA sequencing. Oncotarget. 8:26591–26599. 2017.PubMed/NCBI View Article : Google Scholar

78 

Wang J, Xie H, Ling Q, Lu D, Lv Z, Zhuang R, Liu Z, Wei X, Zhou L, Xu X and Zheng S: Coding-noncoding gene expression in intrahepatic cholangiocarcinoma. Transl Res. 168:107–121. 2016.PubMed/NCBI View Article : Google Scholar

79 

Jiang XM, Li ZL, Li JL, Zheng WY, Li XH, Cui YF and Sun DJ: LncRNA CCAT1 as the unfavorable prognostic biomarker for cholangiocarcinoma. Eur Rev Med Pharmacol Sci. 21:1242–1247. 2017.PubMed/NCBI

80 

Shi X, Zhang H, Wang M, Xu X, Zhao Y, He R, Zhang M, Zhou M, Li X, Peng F, et al: LncRNA AFAP1-AS1 promotes growth and metastasis of cholangiocarcinoma cells. Oncotarget. 8:58394–58404. 2017.PubMed/NCBI View Article : Google Scholar

81 

Wan M, Zhang FM, Li ZL, Kang PC, Jiang PM, Wang YM, Wang ZD, Zhong XY, Li CL, Wang H, et al: Identifying survival-associated ceRNA clusters in cholangiocarcinoma. Oncol Rep. 36:1542–1550. 2016.PubMed/NCBI View Article : Google Scholar

82 

Tan X, Huang Z and Li X: Long non-coding RNA MALAT1 interacted with miR-204 to modulates human hilar cholangiocarcinoma proliferation, migration and invasion by targeting CXCR4. J Cell Biochem. 118:3643–3653. 2017.PubMed/NCBI View Article : Google Scholar

83 

Ma SL, Li AJ, Hu ZY, Shang FS and Wu MC: Coexpression of the carbamoylphosphate synthase 1 gene and its long noncoding RNA correlates with poor prognosis of patients with intrahepatic cholangiocarcinoma. Mol Med Rep. 12:7915–7926. 2015.PubMed/NCBI View Article : Google Scholar

84 

Parasramka M, Yan IK, Wang X, Nguyen P, Matsuda A, Maji S, Foye C, Asmann Y and Patel T: BAP1 dependent expression of long non-coding RNA NEAT-1 contributes to sensitivity to gemcitabine in cholangiocarcinoma. Mol Cancer. 16(22)2017.PubMed/NCBI View Article : Google Scholar

85 

Davaadorj M, Saito Y, Morine Y, Ikemoto T, Imura S, Takasu C, Yamada S, Hiroki T, Yoshikawa M and Shimada M: Loss of secreted frizzled-related protein-1 expression is associated with poor prognosis in intrahepatic cholangiocarcinoma. Eur J Surg Oncol. 43:344–350. 2017.PubMed/NCBI View Article : Google Scholar

86 

Davaadorj M, Imura S, Saito YU, Morine Y, Ikemoto T, Yamada S, Takasu C, Hiroki T, Yoshikawa M and Shimada M: Loss of SFRP1 expression is associated with poor prognosis in hepatocellular carcinoma. Anticancer Res. 36:659–664. 2016.PubMed/NCBI

87 

Khoontawad J, Pairojkul C, Rucksaken R, Pinlaor P, Wongkham C, Yongvanit P, Pugkhem A, Jones A, Plieskatt J, Potriquet J, et al: Differential protein expression marks the transition from infection with Opisthorchis viverrini to cholangiocarcinoma. Mol Cell Proteomics. 16:911–923. 2017.PubMed/NCBI View Article : Google Scholar

88 

Sempoux C, Jibara G, Ward SC, Fan C, Qin L, Roayaie S, Fiel MI, Schwartz M and Thung SN: Intrahepatic cholangiocarcinoma: New insights in pathology. Semin Liver Dis. 31:49–60. 2011.PubMed/NCBI View Article : Google Scholar

89 

Lok T, Chen L, Lin F and Wang HL: Immunohistochemical distinction between intrahepatic cholangiocarcinoma and pancreatic ductal adenocarcinoma. Hum Pathol. 45:394–400. 2014.PubMed/NCBI View Article : Google Scholar

90 

Kanzawa M, Sanuki T, Onodera M, Fujikura K, Itoh T and Zen Y: Double immunostaining for maspin and p53 on cell blocks increases the diagnostic value of biliary brushing cytology. Pathol Int. 67:91–98. 2017.PubMed/NCBI View Article : Google Scholar

91 

Zen Y, Britton D, Mitra V, Pike I, Sarker D, Itoh T, Heaton N and Quaglia A: Tubulin β-III: A novel immunohistochemical marker for intrahepatic peripheral cholangiocarcinoma. Histopathology. 65:784–792. 2014.PubMed/NCBI View Article : Google Scholar

92 

Mustafa MZ, Nguyen VH, Le Naour F, De Martin E, Beleoken E, Guettier C, Johanet C, Samuel D, Duclos-Vallee JC and Ballot E: Autoantibody signatures defined by serological proteome analysis in sera from patients with cholangiocarcinoma. J Transl Med. 14(17)2016.PubMed/NCBI View Article : Google Scholar

93 

Rucksaken R, Pairojkul C, Pinlaor P, Khuntikeo N, Roytrakul S, Selmi C and Pinlaor S: Plasma autoantibodies against heat shock protein 70, enolase 1 and ribonuclease/angiogenin inhibitor 1 as potential biomarkers for cholangiocarcinoma. PLoS One. 9(e103259)2014.PubMed/NCBI View Article : Google Scholar

94 

Le Faouder J, Laouirem S, Alexandrov T, Ben-Harzallah S, Léger T, Albuquerque M, Bedossa P and Paradis V: Tumoral heterogeneity of hepatic cholangiocarcinomas revealed by MALDI imaging mass spectrometry. Proteomics. 14:965–972. 2014.PubMed/NCBI View Article : Google Scholar

95 

Maeda S, Morikawa T, Takadate T, Suzuki T, Minowa T, Hanagata N, Onogawa T, Motoi F, Nishimura T and Unno M: Mass spectrometry-based proteomic analysis of formalin-fixed paraffin-embedded extrahepatic cholangiocarcinoma. J Hepatobiliary Pancreat Sci. 22:683–691. 2015.PubMed/NCBI View Article : Google Scholar

96 

Stephenson B, Shimwell N, Humphreys E, Ward D, Adams D, Martin A and Afford S: Quantitative assessment of the cell surface proteome to identify novel therapeutic targets in cholangiocarcinoma. Lancet. ١ (Suppl 385)(S94)2015.PubMed/NCBI View Article : Google Scholar

97 

Janvilisri T, Leelawat K, Roytrakul S, Paemanee A and Tohtong R: Novel serum biomarkers to differentiate cholangiocarcinoma from benign biliary tract diseases using a proteomic approach. Dis Markers. 2015(105358)2015.PubMed/NCBI View Article : Google Scholar

98 

Adisakwattana P, Suwandittakul N, Petmitr S, Wongkham S, Sangvanich P and Reamtong O: ALCAM is a novel cytoplasmic membrane protein in TNF-α stimulated invasive cholangiocarcinoma cells. Asian Pac J Cancer Prev. 16:3849–3856. 2015.PubMed/NCBI View Article : Google Scholar

99 

Wasuworawong K, Roytrakul S, Paemanee A, Jindapornprasert K and Komyod W: Comparative proteomic analysis of human cholangiocarcinoma cell lines: S100A2 as a potential candidate protein inducer of invasion. Dis Markers. 2015(629367)2015.PubMed/NCBI View Article : Google Scholar

100 

Haonon O, Rucksaken R, Pinlaor P, Pairojkul C, Chamgramol Y, Intuyod K, Onsurathum S, Khuntikeo N and Pinlaor S: Upregulation of 14-3-3 eta in chronic liver fluke infection is a potential diagnostic marker of cholangiocarcinoma. Proteomics Clin Appl. 10:248–256. 2016.PubMed/NCBI View Article : Google Scholar

101 

Seol MA, Chu IS, Lee MJ, Yu GR, Cui XD, Cho BH, Ahn EK, Leem SH, Kim IH and Kim DG: Genome-wide expression patterns associated with oncogenesis and sarcomatous transdifferentation of cholangiocarcinoma. BMC Cancer. 11(78)2011.PubMed/NCBI View Article : Google Scholar

102 

Yang XW, Li L, Hou GJ, Yan XZ, Xu QG, Chen L, Zhang BH and Shen F: STAT3 overexpression promotes metastasis in intrahepatic cholangiocarcinoma and correlates negatively with surgical outcome. Oncotarget. 8:7710–7721. 2017.PubMed/NCBI View Article : Google Scholar

103 

Braconi C, Swenson E, Kogure T, Huang N and Patel T: Targeting the IL-6 dependent phenotype can identify novel therapies for cholangiocarcinoma. PLoS One. 5(e15195)2010.PubMed/NCBI View Article : Google Scholar

104 

Yoo CB and Jones PA: Epigenetic therapy of cancer: Past, present and future. Nat Rev Drug Discov. 5:37–50. 2006.PubMed/NCBI View Article : Google Scholar

105 

Beisler JA: Isolation, characterization, and properties of a labile hydrolysis product of the antitumor nucleoside, 5-azacytidine. J Med Chem. 21:204–208. 1978.PubMed/NCBI View Article : Google Scholar

106 

Cheng JC, Weisenberger DJ, Gonzales FA, Liang G, Xu GL, Hu YG, Marquez VE and Jones PA: Continuous zebularine treatment effectively sustains demethylation in human bladder cancer cells. Mol Cell Biol. 24:1270–1278. 2004.PubMed/NCBI View Article : Google Scholar

107 

Marquez VE, Barchi JJ Jr, Kelley JA, Rao KV, Agbaria R, Ben-Kasus T, Cheng JC, Yoo CB and Jones PA: Zebularine: A unique molecule for an epigenetically based strategy in cancer chemotherapy. The magic of its chemistry and biology. Nucleosides Nucleotides Nucleic Acids. 24:305–318. 2005.PubMed/NCBI

108 

Nakamura K, Nakabayashi K, Htet Aung K, Aizawa K, Hori N, Yamauchi J, Hata K and Tanoue A: DNA methyltransferase inhibitor zebularine induces human cholangiocarcinoma cell death through alteration of DNA methylation status. PLoS One. 10(e0120545)2015.PubMed/NCBI View Article : Google Scholar

109 

Kelly WK and Marks PA: Drug insight: Histone deacetylase inhibitors-development of the new targeted anticancer agent suberoylanilide hydroxamic acid. Nat Clin Pract Oncol. 2:150–157. 2005.PubMed/NCBI View Article : Google Scholar

110 

Sharma S, Kelly TK and Jones PA: Epigenetics in cancer. Carcinogenesis. 31:27–36. 2010.PubMed/NCBI View Article : Google Scholar

111 

Sriraksa R and Limpaiboon T: Histone deacetylases and their inhibitors as potential therapeutic drugs for cholangiocarcinoma-cell line findings. Asian Pac J Cancer Prev. 14:2503–2508. 2013.PubMed/NCBI View Article : Google Scholar

112 

Nakagawa S, Sakamoto Y, Okabe H, Hayashi H, Hashimoto D, Yokoyama N, Tokunaga R, Sakamoto K, Kuroki H, Mima K, et al: Epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A inhibits the growth of cholangiocarcinoma cells. Oncol Rep. 31:983–988. 2014.PubMed/NCBI View Article : Google Scholar

113 

Gores GJ: Early detection and treatment of cholangiocarcinoma. Liver Transpl. 6 (6 Suppl 2):S30–S34. 2000.PubMed/NCBI View Article : Google Scholar

114 

Nakaoka T, Saito Y and Saito H: Aberrant DNA methylation as a biomarker and a therapeutic target of cholangiocarcinoma. Int J Mol Sci. 18(E1111)2017.PubMed/NCBI View Article : Google Scholar

115 

Jusakul A, Cutcutache I, Yong CH, Lim JQ, Huang MN, Padmanabhan N, Nellore V, Kongpetch S, Ng AWT, Ng LM, et al: Whole-genome and epigenomic landscapes of etiologically distinct subtypes of cholangiocarcinoma. Cancer Discov. 7:1116–1135. 2017.PubMed/NCBI View Article : Google Scholar

116 

Ettel M, Eze O and Xu R: Clinical and biological significance of precursor lesions of intrahepatic cholangiocarcinoma. World J Hepatol. 7:2563–2570. 2015.PubMed/NCBI View Article : Google Scholar

117 

Fujimoto A, Furuta M, Shiraishi Y, Gotoh K, Kawakami Y, Arihiro K, Nakamura T, Ueno M, Ariizumi S, Nguyen HH, et al: Whole-genome mutational landscape of liver cancers displaying biliary phenotype reveals hepatitis impact and molecular diversity. Nat Commun. 6(6120)2015.PubMed/NCBI View Article : Google Scholar

118 

Komuta M, Govaere O, Vandecaveye V, Akiba J, Van Steenbergen W, Verslype C, Laleman W, Pirenne J, Aerts R, Yano H, et al: Histological diversity in cholangiocellular carcinoma reflects the different cholangiocyte phenotypes. Hepatology. 55:1876–1888. 2012.PubMed/NCBI View Article : Google Scholar

119 

Rizvi S and Gores GJ: Pathogenesis, diagnosis, and management of cholangiocarcinoma. Gastroenterology. 145:1215–1229. 2013.PubMed/NCBI View Article : Google Scholar

Related Articles

Journal Cover

July 2019
Volume 1 Issue 4

Print ISSN: 2632-2900
Online ISSN:2632-2919

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Rai, V., Boosani, C.S., & Agrawal, D.K. (2019). The promising role of epigenetic mediators and microRNAs in the early diagnosis of cholangiocarcinoma (Review). World Academy of Sciences Journal, 1, 165-176. https://doi.org/10.3892/wasj.2019.18
MLA
Rai, V., Boosani, C. S., Agrawal, D. K."The promising role of epigenetic mediators and microRNAs in the early diagnosis of cholangiocarcinoma (Review)". World Academy of Sciences Journal 1.4 (2019): 165-176.
Chicago
Rai, V., Boosani, C. S., Agrawal, D. K."The promising role of epigenetic mediators and microRNAs in the early diagnosis of cholangiocarcinoma (Review)". World Academy of Sciences Journal 1, no. 4 (2019): 165-176. https://doi.org/10.3892/wasj.2019.18