TNF‑α‑mediated upregulation of SOD‑2 contributes to cell proliferation and cisplatin resistance in esophageal squamous cell carcinoma

  • Authors:
    • Jing Zuo
    • Mei Zhao
    • Bowei Liu
    • Xiaojing Han
    • Yuehong Li
    • Wei Wang
    • Qing Zhang
    • Ping Lv
    • Lingxiao Xing
    • Haitao Shen
    • Xianghong Zhang
  • View Affiliations

  • Published online on: July 26, 2019     https://doi.org/10.3892/or.2019.7252
  • Pages: 1497-1506
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Intrinsic and acquired resistance of cancer to radio‑and chemotherapy is one of the major challenges in the treatment of esophageal squamous cell carcinoma (ESCC). Elevated reactive oxygen species (ROS) play an important role in the resistance to cisplatin in ESCCs. Super dismutase [Mn], mitochondrial (SOD‑2), an important primary antioxidant enzyme located in mitochondria, could regulate ROS production. Our previous study showed that tumor necrosis factor‑α (TNF‑α)‑mediated SOD‑2 through NF‑κB was involved in epithelial‑mesenchymal transition and migration in A549 cells. Therefore, the present study aimed to identify if TNF‑α mediated SOD‑2 upregulation is involved in cisplatin resistance in ESCC. It was identified that a higher expression of SOD‑2 in human ESCC samples was associated with TNF‑α expression and poor overall survival in patients with ESCC, suggesting that SOD‑2 may act as an oncogene in ESCC. To further confirm if TNF‑α could upregulate SOD‑2 to contribute to cell proliferation, the human ESCC cell line Eca‑109 was treated with TNF‑α in vitro. TNF‑α could upregulate SOD‑2 and induce cell proliferation in Eca109 cells, while blocking SOD‑2 using small interfering RNA (siRNA) inhibited TNF‑α‑induced cell proliferation. Upregulation of SOD‑2 by TNF‑α was inhibited by blocking the NF‑κB pathway, which suggested that SOD‑2 by TNF‑α/NF‑κB contributes to cell proliferation in Eca109 cells. Furthermore, it was observed that TNF‑α could induce cisplatin resistance in Eca109 cells, while transfection with SOD‑2 siRNA could significantly increase the chemosensitivity of ESCC to cisplatin. Therefore, the present results suggested that SOD‑2 may serve as an oncogene, and the upregulation of SOD‑2 by TNF‑α/NF‑κB may contribute to cisplatin resistance in ESCC.

References

1 

Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China, 2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Messager M, Warlaumont M, Renaud F, Marin H, Branche J, Piessen G and Mariette C: Recent improvements in the management of esophageal anastomotic leak after surgery for cancer. Eur J Surg Oncol. 43:258–269. 2017. View Article : Google Scholar : PubMed/NCBI

3 

Zeng H, Zheng R, Guo Y, Zhang S, Zou X, Wang N, Zhang L, Tang J, Chen J, Wei K, et al: Cancer survival in China, 2003–2005: A population-based study. Int J Cancer. 136:1921–1930. 2015. View Article : Google Scholar : PubMed/NCBI

4 

Zhou P, Zhang R, Wang Y, Xu D, Zhang L, Qin J, Su G, Feng Y, Chen H, You S, et al: Cepharanthine hydrochloride reverses the mdr1 (P-glycoprotein)-mediated esophageal squamous cell carcinoma cell cisplatin resistance through JNK and p53 signals. Oncotarget. 8:111144–111160. 2017. View Article : Google Scholar : PubMed/NCBI

5 

Liu T, Li R, Zhao H, Deng J, Long Y, Shuai MT, Li Q, Gu H, Chen YQ and Leng AM: eIF4E promotes tumorigenesis and modulates chemosensitivity to cisplatin in esophageal squamous cell carcinoma. Oncotarget. 7:66851–66864. 2016.PubMed/NCBI

6 

Siddik ZH: Cisplatin: Mode of cytotoxic action and molecular basis of resistance. Oncogene. 22:7265–7279. 2003. View Article : Google Scholar : PubMed/NCBI

7 

Fang C, Chen YX, Wu NY, Yin JY, Li XP, Huang HS, Zhang W, Zhou HH and Liu ZQ: MiR-488 inhibits proliferation and cisplatin sensibility in non-small-cell lung cancer (NSCLC) cells by activating the eIF3a-mediated NER signaling pathway. Sci Rep. 7:403842017. View Article : Google Scholar : PubMed/NCBI

8 

Li M, Chen W, Zhang H, Zhang Y, Ke F, Wu X, Zhang Y, Weng M, Liu Y and Gong W: MiR-31 regulates the cisplatin resistance by targeting Src in gallbladder cancer. Oncotarget. 7:83060–83070. 2016.PubMed/NCBI

9 

Wangpaichitr M, Sullivan EJ, Theodoropoulos G, Wu C, You M, Feun LG, Lampidis TJ, Kuo MT and Savaraj N: The relationship of thioredoxin-1 and cisplatin resistance: Its impact on ROS and oxidative metabolism in lung cancer cells. Mol Cancer Ther. 11:604–615. 2012. View Article : Google Scholar : PubMed/NCBI

10 

Green DR and Reed JC: Mitochondria and apoptosis. Science. 281:1309–1312. 1998. View Article : Google Scholar : PubMed/NCBI

11 

Trachootham D, Lu W, Ogasawara MA, Nilsa RD and Huang P: Redox regulation of cell survival. Antioxid Redox Signal. 10:1343–1374. 2008. View Article : Google Scholar : PubMed/NCBI

12 

Miriyala S, Holley AK and St Clair DK: Mitochondrial superoxide dismutase-signals of distinction. Anticancer Agents Med Chem. 11:181–190. 2011. View Article : Google Scholar : PubMed/NCBI

13 

Kienhöfer J, Häussler DJ, Ruckelshausen F, Muessig E, Weber K, Pimentel D, Ullrich V, Bürkle A and Bachschmid MM: Association of mitochondrial antioxidant enzymes with mitochondrial DNA as integral nucleoid constituents. FASEB J. 23:2034–2044. 2009. View Article : Google Scholar : PubMed/NCBI

14 

Zhou J and Du Y: Acquisition of resistance of pancreatic cancer cells to 2-methoxyestradiol is associated with the upregulation of manganese superoxide dismutase. Mol Cancer Res. 10:768–777. 2012. View Article : Google Scholar : PubMed/NCBI

15 

Yi L, Shen H, Zhao M, Shao P, Liu C, Cui J, Wang J, Wang C, Guo N, Kang L, et al: Inflammation-mediated SOD-2 upregulation contributes to epithelial-mesenchymal transition and migration of tumor cells in aflatoxin G1-induced lung adenocarcinoma. Sci Rep. 7:79532017. View Article : Google Scholar : PubMed/NCBI

16 

Chung-man Ho J, Zheng S, Comhair SA, Farver C and Erzurum SC: Differential expression of manganese superoxide dismutase and catalase in lung cancer. Cancer Res. 61:8578–8585. 2001.PubMed/NCBI

17 

Kinugasa H, Whelan KA, Tanaka K, Natsuizaka M, Long A, Guo A, Chang S, Kagawa S, Srinivasan S, Guha M, et al: Mitochondrial SOD2 regulates epithelial-mesenchymal transition and cell populations defined by differential CD44 expression. Oncogene. 34:5229–5239. 2015. View Article : Google Scholar : PubMed/NCBI

18 

Rice TW, Ishwaran H, Hofstetter WL, Kelsen DP, Apperson-Hansen C and Blackstone EH; Worldwide Esophageal Cancer Collaboration Investigators, : Recommendations for pathologic staging (pTNM) of cancer of the esophagus and esophagogastric junction for the 8th edition AJCC/UICC staging manuals. Dis Esophagus. 29:897–905. 2016. View Article : Google Scholar : PubMed/NCBI

19 

Rice TW, Gress DM, Patil DT, Hofstetter WL, Kelsen DP and Blackstone EH: Cancer of the esophagus and esophagogastric junction-Major changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J Clin. 67:304–317. 2017. View Article : Google Scholar : PubMed/NCBI

20 

Liu C, Shen H, Yi L, Shao P, Soulika AM, Meng X, Xing L, Yan X and Zhang X: Oral administration of aflatoxin G1 induces chronic alveolar inflammation associated with lung tumorigenesis. Toxicol Lett. 232:547–556. 2015. View Article : Google Scholar : PubMed/NCBI

21 

Chang B, Yang H, Jiao Y, Wang K, Liu Z, Wu P, Li S and Wang A: SOD2 deregulation enhances migration, invasion and has poor prognosis in salivary adenoid cystic carcinoma. Sci Rep. 6:259182016. View Article : Google Scholar : PubMed/NCBI

22 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

23 

Shen H, Liu J, Wang Y, Lian H, Wang J, Xing L, Yan X, Wang J and Zhang X: Aflatoxin G1-induced oxidative stress causes DNA damage and triggers apoptosis through MAPK signaling pathway in A549 cells. Food Chem Toxicol. 62:661–669. 2013. View Article : Google Scholar : PubMed/NCBI

24 

Miao L and St Clair DK: Regulation of superoxide dismutase genes: Implications in disease. Free Radic Biol Med. 47:344–356. 2009. View Article : Google Scholar : PubMed/NCBI

25 

Johnson F and Giulivi C: Superoxide dismutases and their impact upon human health. Mol Aspects Med. 26:340–352. 2005. View Article : Google Scholar : PubMed/NCBI

26 

Kinnula VL and Crapo JD: Superoxide dismutases in malignant cells and human tumors. Free Radic Biol Med. 36:718–744. 2004. View Article : Google Scholar : PubMed/NCBI

27 

Liu Z, Li S, Cai Y, Wang A, He Q, Zheng C, Zhao T, Ding X and Zhou X: Manganese superoxide dismutase induces migration and invasion of tongue squamous cell carcinoma via H2O2-dependent Snail signaling. Free Radic Biol Med. 53:44–50. 2012. View Article : Google Scholar : PubMed/NCBI

28 

Hemachandra LP, Shin DH, Dier U, Iuliano JN, Engelberth SA, Uusitalo LM, Murphy SK and Hempel N: Mitochondrial superoxide dismutase has a protumorigenic role in ovarian clear cell carcinoma. Cancer Res. 75:4973–4984. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Kitakata H, Nemoto-Sasaki Y, Takahashi Y, Kondo T, Mai M and Mukaida N: Essential roles of tumor necrosis factor receptor p55 in liver metastasis of intrasplenic administration of colon 26 cells. Cancer Res. 62:6682–6687. 2002.PubMed/NCBI

30 

Tomita Y, Yang X, Ishida Y, Nemoto-Sasaki Y, Kondo T, Oda M, Watanabe G, Chaldakov GN, Fujii C and Mukaida N: Spontaneous regression of lung metastasis in the absence of tumor necrosis factor receptor p55. Int J Cancer. 112:927–933. 2004. View Article : Google Scholar : PubMed/NCBI

31 

Atsumi T, Singh R, Sabharwal L, Bando H, Meng J, Arima Y, Yamada M, Harada M, Jiang JJ, Kamimura D, et al: Inflammation amplifier, a new paradigm in cancer biology. Cancer Res. 74:8–14. 2014. View Article : Google Scholar : PubMed/NCBI

32 

Shao P, Guo N, Wang C, Zhao M, Yi L, Liu C, Kang L, Cao L, Lv P, Xing L, et al: Aflatoxin G1 induced TNF-α-dependent lung inflammation to enhance DNA damage in alveolar epithelial cells. J Cell Physiol. 234:9194–9206. 2019. View Article : Google Scholar : PubMed/NCBI

33 

Wang SF, Chen MS, Chou YC, Ueng YF, Yin PH, Yeh TS and Lee HC: Mitochondrial dysfunction enhances cisplatin resistance in human gastric cancer cells via the ROS-activated GCN2-eIF2α-ATF4-xCT pathway. Oncotarget. 7:74132–74151. 2016.PubMed/NCBI

34 

Takai D, Park SH, Takada Y, Ichinose S, Kitagawa M and Akashi M: UV-irradiation induces oxidative damage to mitochondrial DNA primarily through hydrogen peroxide: Analysis of 8-oxodGuo by HPLC. Free Radic Res. 40:1138–1148. 2006. View Article : Google Scholar : PubMed/NCBI

35 

Larosche I, Letteron P, Berson A, Fromenty B, Huang TT, Moreau R, Pessayre D and Mansouri A: Hepatic mitochondrial DNA depletion after an alcohol binge in mice: Probable role of peroxynitrite and modulation by manganese superoxide dismutase. J Pharmacol Exp Ther. 332:886–897. 2010. View Article : Google Scholar : PubMed/NCBI

36 

Madsen-Bouterse SA, Zhong Q, Mohammad G, Ho YS and Kowluru RA: Oxidative damage of mitochondrial DNA in diabetes and its protection by manganese superoxide dismutase. Free Radic Res. 44:313–321. 2010. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

October 2019
Volume 42 Issue 4

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Zuo, J., Zhao, M., Liu, B., Han, X., Li, Y., Wang, W. ... Zhang, X. (2019). TNF‑α‑mediated upregulation of SOD‑2 contributes to cell proliferation and cisplatin resistance in esophageal squamous cell carcinoma. Oncology Reports, 42, 1497-1506. https://doi.org/10.3892/or.2019.7252
MLA
Zuo, J., Zhao, M., Liu, B., Han, X., Li, Y., Wang, W., Zhang, Q., Lv, P., Xing, L., Shen, H., Zhang, X."TNF‑α‑mediated upregulation of SOD‑2 contributes to cell proliferation and cisplatin resistance in esophageal squamous cell carcinoma". Oncology Reports 42.4 (2019): 1497-1506.
Chicago
Zuo, J., Zhao, M., Liu, B., Han, X., Li, Y., Wang, W., Zhang, Q., Lv, P., Xing, L., Shen, H., Zhang, X."TNF‑α‑mediated upregulation of SOD‑2 contributes to cell proliferation and cisplatin resistance in esophageal squamous cell carcinoma". Oncology Reports 42, no. 4 (2019): 1497-1506. https://doi.org/10.3892/or.2019.7252