MDM4 expression in fibrolamellar hepatocellular carcinoma

  • Authors:
    • Anju Karki
    • Juan Putra
    • Stephanie S. Kim
    • Michael J. Laquaglia
    • Antonio R. Perez‑Atayde
    • Ghazaleh Sadri‑Vakili
    • Khashayar Vakili
  • View Affiliations

  • Published online on: July 18, 2019     https://doi.org/10.3892/or.2019.7241
  • Pages: 1487-1496
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Fibrolamellar hepatocellular carcinoma (FL‑HCC) is a variant of hepatocellular carcinoma (HCC) that most commonly affects adolescents and young adults and is associated with an extremely poor prognosis due to the lack of effective chemotherapeutic agents. Mutations in p53 are a common oncogenic driver in HCC but not in FL‑HCC. However, in tumors lacking a p53 mutation, the tumor suppressor activity of p53 has been revealed to be dysregulated in several different cancer types. One mechanism has been attributed to the overexpression of mouse double minute 4 protein (MDM4), a negative regulator of p53, which inhibits the normal functions of p53 including induction of apoptosis and DNA repair. Therefore, restoring the normal function of p53 in cancer cells by targeting MDM4 has become a potential therapeutic strategy. Hence, in the present study the components of the DNA damage response (DDR) pathway were examined; ATM, p53, and MDM4 in FL‑HCC. Seven FL‑HCC tumors along with their adjacent non‑neoplastic hepatic tissues were examined. Ataxia‑telangiectasia mutated (ATM), p53, and MDM4 protein expression was assessed using western blot analysis and cellular localization was determined using immunohistochemistry (IHC). MDM4 mRNA transcript levels were assessed using RT‑qPCR. The present results demonstrated that the DNA damage sensor, ATM, is phosphorylated and localized to the nuclei of tumor cells. While there was a significant increase in total p53 protein in tumor cells, phosphorylated p53 was revealed to preferably localize to the cytoplasmic compartment of tumor cells. Notably, the present results revealed that MDM4 transcript levels were increased in the majority of tumor samples and the nuclear MDM4 levels were significantly increased in tumor tissue compared to their adjacent non‑neoplastic liver tissue. The present results indicated that increased MDM4 expression and nuclear localization may be a potential mechanism for p53 dysregulation in FL‑HCC.

References

1 

Schlaeger C, Longerich T, Schiller C, Bewerunge P, Mehrabi A, Toedt G, Kleeff J, Ehemann V, Eils R, Lichter P, et al: Etiology-dependent molecular mechanisms in human hepatocarcinogenesis. Hepatology. 47:511–520. 2008. View Article : Google Scholar : PubMed/NCBI

2 

El-Serag HB and Davila JA: Is fibrolamellar carcinoma different from hepatocellular carcinoma? A US population-based study. Hepatology. 39:798–803. 2004. View Article : Google Scholar : PubMed/NCBI

3 

Mavros MN, Mayo SC, Hyder O and Pawlik TM: A systematic review: Treatment and prognosis of patients with fibrolamellar hepatocellular carcinoma. J Am Coll Surg. 215:820–830. 2012. View Article : Google Scholar : PubMed/NCBI

4 

Kakar S, Chen X, Ho C, Burgart LJ, Sahai V, Dachrut S, Yabes A, Jain D and Ferrell LD: Chromosomal changes in fibrolamellar hepatocellular carcinoma detected by array comparative genomic hybridization. Mod Pathol. 22:134–141. 2009. View Article : Google Scholar : PubMed/NCBI

5 

Craig JR, Peters RL, Edmondson HA and Omata M: Fibrolamellar carcinoma of the liver: A tumor of adolescents and young adults with distinctive clinico-pathologic features. Cancer. 46:372–379. 1980. View Article : Google Scholar : PubMed/NCBI

6 

Kakar S, Burgart LJ, Batts KP, Garcia J, Jain D and Ferrell LD: Clinicopathologic features and survival in fibrolamellar carcinoma: Comparison with conventional hepatocellular carcinoma with and without cirrhosis. Mod Pathol. 18:1417–1423. 2005. View Article : Google Scholar : PubMed/NCBI

7 

Edmondson HA: Differential diagnosis of tumors and tumor-like lesions of liver in infancy and childhood. AMA J Dis Child. 91:168–186. 1956.PubMed/NCBI

8 

Sanyal AJ, Yoon SK and Lencioni R: The etiology of hepatocellular carcinoma and consequences for treatment. Oncologist. 15 (Suppl 4):S14–S22. 2010. View Article : Google Scholar

9 

Lafaro KJ and Pawlik TM: Fibrolamellar hepatocellular carcinoma: Current clinical perspectives. J Hepatocell Carcinoma. 2:151–157. 2015.PubMed/NCBI

10 

Lane DP: Cancer. p53, guardian of the genome. Nature. 358:15–16. 1992. View Article : Google Scholar : PubMed/NCBI

11 

Efeyan A and Serrano M: p53: Guardian of the genome and policeman of the oncogenes. Cell Cycle. 6:1006–1010. 2007. View Article : Google Scholar : PubMed/NCBI

12 

Selivanova G: Wild type p53 reactivation: From lab bench to clinic. FEBS Lett. 588:2628–2638. 2014. View Article : Google Scholar : PubMed/NCBI

13 

Shiloh Y: ATM: Ready, set, go. Cell Cycle. 2:116–117. 2003. View Article : Google Scholar : PubMed/NCBI

14 

Shiloh Y: ATM and related protein kinases: Safeguarding genome integrity. Nat Rev Cancer. 3:155–168. 2003. View Article : Google Scholar : PubMed/NCBI

15 

Banin S, Moyal L, Shieh S, Taya Y, Anderson CW, Chessa L, Smorodinsky NI, Prives C, Reiss Y, Shiloh Y and Ziv Y: Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science. 281:1674–1677. 1998. View Article : Google Scholar : PubMed/NCBI

16 

Polyak K, Xia Y, Zweier JL, Kinzler KW and Vogelstein B: A model for p53-induced apoptosis. Nature. 389:300–305. 1997. View Article : Google Scholar : PubMed/NCBI

17 

Livingstone LR, White A, Sprouse J, Livanos E, Jacks T and Tlsty TD: Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell. 70:923–935. 1992. View Article : Google Scholar : PubMed/NCBI

18 

Sengupta S and Harris CC: p53: Traffic cop at the crossroads of DNA repair and recombination. Nat Rev Mol Cell Biol. 6:44–55. 2005. View Article : Google Scholar : PubMed/NCBI

19 

Marine JC: MDM2 and MDMX in cancer and development. Curr Top Dev Biol. 94:45–75. 2011. View Article : Google Scholar : PubMed/NCBI

20 

Marine JC and Jochemsen AG: Mdmx as an essential regulator of p53 activity. Biochem Biophys Res Commun. 331:750–760. 2005. View Article : Google Scholar : PubMed/NCBI

21 

Haupt Y, Maya R, Kazaz A and Oren M: Mdm2 promotes the rapid degradation of p53. Nature. 387:296–299. 1997. View Article : Google Scholar : PubMed/NCBI

22 

Shvarts A, Bazuine M, Dekker P, Ramos YF, Steegenga WT, Merckx G, van Ham RC, van der Houven van Oordt W, van der Eb AJ and Jochemsen AG: Isolation and identification of the human homolog of a new p53-binding protein, Mdmx. Genomics. 43:34–42. 1997. View Article : Google Scholar : PubMed/NCBI

23 

Shvarts A, Steegenga WT, Riteco N, van Laar T, Dekker P, Bazuine M, van Ham RC, van der Houven van Oordt W, Hateboer G, van der Eb AJ and Jochemsen AG: MDMX: A novel p53-binding protein with some functional properties of MDM2. EMBO J. 15:5349–5357. 1996. View Article : Google Scholar : PubMed/NCBI

24 

Leroy B, Anderson M and Soussi T: TP53 mutations in human cancer: Database reassessment and prospects for the next decade. Hum Mutat. 35:672–688. 2014. View Article : Google Scholar : PubMed/NCBI

25 

Li L, Tan Y, Chen X, Xu Z, Yang S, Ren F, Guo H, Wang X, Chen Y, Li G and Wang H: MDM4 overexpressed in acute myeloid leukemia patients with complex karyotype and wild-type TP53. PLoS One. 9:e1130882014. View Article : Google Scholar : PubMed/NCBI

26 

Quintás-Cardama A, Hu C, Qutub A, Qiu YH, Zhang X, Post SM, Zhang N, Coombes K and Kornblau SM: p53 pathway dysfunction is highly prevalent in acute myeloid leukemia independent of TP53 mutational status. Leukemia. 31:1296–1305. 2017. View Article : Google Scholar : PubMed/NCBI

27 

Li Q and Lozano G: Molecular pathways: Targeting Mdm2 and Mdm4 in cancer therapy. Clin Cancer Res. 19:34–41. 2013. View Article : Google Scholar : PubMed/NCBI

28 

Gembarska A, Luciani F, Fedele C, Russell EA, Dewaele M, Villar S, Zwolinska A, Haupt S, de Lange J, Yip D, et al: MDM4 is a key therapeutic target in cutaneous melanoma. Nat Med. 18:1239–1247. 2012. View Article : Google Scholar : PubMed/NCBI

29 

Haupt S, Buckley D, Pang JM, Panimaya J, Paul PJ, Gamell C, Takano EA, Lee YY, Hiddingh S, Rogers TM, et al: Targeting Mdmx to treat breast cancers with wild-type p53. Cell Death Dis. 6:e18212015. View Article : Google Scholar : PubMed/NCBI

30 

Kan Z, Zheng H, Liu X, Li S, Barber TD, Gong Z, Gao H, Hao K, Willard MD, Xu J, et al: Whole-genome sequencing identifies recurrent mutations in hepatocellular carcinoma. Genome Res. 23:1422–1433. 2013. View Article : Google Scholar : PubMed/NCBI

31 

Kunst C, Haderer M, Heckel S, Schlosser S and Müller M: The p53 family in hepatocellular carcinoma. Transl Cancer Res. 5:632–638. 2016. View Article : Google Scholar

32 

Ward SC and Waxman S: Fibrolamellar carcinoma: A review with focus on genetics and comparison to other malignant primary liver tumors. Semin Liver Dis. 31:61–70. 2011. View Article : Google Scholar : PubMed/NCBI

33 

Sorenson EC, Khanin R, Bamboat ZM, Cavnar MJ, Kim TS, Sadot E, Zeng S, Greer JB, Seifert AM, Cohen NA, et al: Genome and transcriptome profiling of fibrolamellar hepatocellular carcinoma demonstrates p53 and IGF2BP1 dysregulation. PLoS One. 12:e01765622017. View Article : Google Scholar : PubMed/NCBI

34 

Cancer Genome Atlas Research Network. Electronic address, . wheeler@bcm.edu; Cancer Genome AtlasResearch Network: Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell. 169:1327–1341.e23. 2017. View Article : Google Scholar : PubMed/NCBI

35 

Arai Y, Honda S, Haruta M, Kasai F, Fujiwara Y, Ohshima J, Sasaki F, Nakagawara A, Horie H, Yamaoka H, et al: Genome-wide analysis of allelic imbalances reveals 4q deletions as a poor prognostic factor and MDM4 amplification at 1q32.1 in hepatoblastoma. Genes Chromosomes Cancer. 49:596–609. 2010.PubMed/NCBI

36 

LaQuaglia MJ, Grijalva JL, Mueller KA, Perez-Atayde AR, Kim HB, Sadri-Vakili G and Vakili K: YAP subcellular localization and Hippo pathway transcriptome analysis in pediatric hepatocellular carcinoma. Sci Rep. 6:302382016. View Article : Google Scholar : PubMed/NCBI

37 

Fedchenko N and Reifenrath J: Different approaches for interpretation and reporting of immunohistochemistry analysis results in the bone tissue-a review. Diagn Pathol. 9:2212014. View Article : Google Scholar : PubMed/NCBI

38 

Hemming AW, Langer B, Sheiner P, Greig PD and Taylor BR: Aggressive surgical management of fibrolamellar hepatocellular carcinoma. J Gastrointest Surg. 1:342–346. 1997. View Article : Google Scholar : PubMed/NCBI

39 

Stevens WR, Johnson CD, Stephens DH and Nagorney DM: Fibrolamellar hepatocellular carcinoma: Stage at presentation and results of aggressive surgical management. AJR Am J Roentgenol. 164:1153–1158. 1995. View Article : Google Scholar : PubMed/NCBI

40 

Honeyman JN, Simon EP, Robine N, Chiaroni-Clarke R, Darcy DG, LimI I, Gleason CE, Murphy JM, Rosenberg BR, Teegan L, et al: Detection of a recurrent DNAJB1-PRKACA chimeric transcript in fibrolamellar hepatocellular carcinoma. Science. 343:1010–1014. 2014. View Article : Google Scholar : PubMed/NCBI

41 

Graham RP, Jin L, Knutson DL, Kloft-Nelson SM, Greipp PT, Waldburger N, Roessler S, Longerich T, Roberts LR, Oliveira AM, et al: DNAJB1-PRKACA is specific for fibrolamellar carcinoma. Mod Pathol. 28:822–829. 2015. View Article : Google Scholar : PubMed/NCBI

42 

Turenne GA, Paul P, Laflair L and Price BD: Activation of p53 transcriptional activity requires ATM's kinase domain and multiple N-terminal serine residues of p53. Oncogene. 20:5100–5110. 2001. View Article : Google Scholar : PubMed/NCBI

43 

Haupt S, Vijayakumaran R, Miranda PJ, Burgess A, Lim E and Haupt Y: The role of MDM2 and MDM4 in breast cancer development and prevention. J Mol Cell Biol. 9:53–61. 2017. View Article : Google Scholar : PubMed/NCBI

44 

Zhang H, Hu L, Qiu W, Deng T, Zhang Y, Bergholz J and Xiao ZX: MDMX exerts its oncogenic activity via suppression of retinoblastoma protein. Oncogene. 34:5560–5569. 2015. View Article : Google Scholar : PubMed/NCBI

45 

Carneiro A, Isinger A, Karlsson A, Johansson J, Jönsson G, Bendahl PO, Falkenback D, Halvarsson B and Nilbert M: Prognostic impact of array-based genomic profiles in esophageal squamous cell cancer. BMC Cancer. 8:982008. View Article : Google Scholar : PubMed/NCBI

46 

Tomasini MD, Wang Y, Karamafrooz A, Li G, Beuming T, Gao J, Taylor SS, Veglia G and Simon SM: Conformational LANDSCAPE of the PRKACA-DNAJB1 chimeric kinase, the driver for fibrolamellar hepatocellular carcinoma. Sci Rep. 8:7202018. View Article : Google Scholar : PubMed/NCBI

47 

Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P and Olivier M: Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: Lessons from recent developments in the IARC TP53 database. Hum Mutat. 28:622–629. 2007. View Article : Google Scholar : PubMed/NCBI

48 

Olivier M, Hollstein M and Hainaut P: TP53 mutations in human cancers: Origins, consequences, and clinical use. Cold Spring Harb Perspect Biol. 2:a0010082010. View Article : Google Scholar : PubMed/NCBI

49 

Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, Carter SL, Stewart C, Mermel CH, Roberts SA, et al: Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 499:214–218. 2013. View Article : Google Scholar : PubMed/NCBI

50 

Xu L, Hazard FK, Zmoos AF, Jahchan N, Chaib H, Garfin PM, Rangaswami A, Snyder MP and Sage J: Genomic analysis of fibrolamellar hepatocellular carcinoma. Hum Mol Genet. 24:50–63. 2015. View Article : Google Scholar : PubMed/NCBI

51 

Finlay CA, Hinds PW and Levine AJ: The p53 proto-oncogene can act as a suppressor of transformation. Cell. 57:1083–1093. 1989. View Article : Google Scholar : PubMed/NCBI

52 

Harper JW, Adami GR, Wei N, Keyomarsi K and Elledge SJ: The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell. 75:805–816. 1993. View Article : Google Scholar : PubMed/NCBI

53 

Kastenhuber ER and Lowe SW: Putting p53 in context. Cell. 170:1062–1078. 2017. View Article : Google Scholar : PubMed/NCBI

54 

Mills KD: Tumor suppression: Putting p53 in context. Cell Cycle. 12:3461–3462. 2013. View Article : Google Scholar : PubMed/NCBI

55 

O'Brate A and Giannakakou P: The importance of p53 location: Nuclear or cytoplasmic zip code? Drug Resist Updat. 6:313–322. 2003. View Article : Google Scholar : PubMed/NCBI

56 

Sembritzki O, Hagel C, Lamszus K, Deppert W and Bohn W: Cytoplasmic localization of wild-type p53 in glioblastomas correlates with expression of vimentin and glial fibrillary acidic protein. Neuro Oncol. 4:171–178. 2002. View Article : Google Scholar : PubMed/NCBI

57 

Green DR and Kroemer G: Cytoplasmic functions of the tumour suppressor p53. Nature. 458:1127–1130. 2009. View Article : Google Scholar : PubMed/NCBI

58 

Moll UM, Riou G and Levine AJ: Two distinct mechanisms alter p53 in breast cancer: Mutation and nuclear exclusion. Proc Natl Acad Sci USA. 89:7262–7266. 1992. View Article : Google Scholar : PubMed/NCBI

59 

Bosari S, Viale G, Roncalli M, Graziani D, Borsani G, Lee AK and Coggi G: p53 gene mutations, p53 protein accumulation and compartmentalization in colorectal adenocarcinoma. Am J Pathol. 147:790–798. 1995.PubMed/NCBI

60 

Vici P, Di Benedetto A, Ercolani C, Pizzuti L, Di Lauro L, Sergi D, Sperati F, Terrenato I, Dattilo R, Botti C, et al: Predictive significance of DNA damage and repair biomarkers in triple-negative breast cancer patients treated with neoadjuvant chemotherapy: An exploratory analysis. Oncotarget. 6:42773–42780. 2015. View Article : Google Scholar : PubMed/NCBI

61 

Shen X, Zuo X, Zhang W, Bai Y, Qin X and Hou N: MiR-370 promotes apoptosis in colon cancer by directly targeting MDM4. Oncol Lett. 15:1673–1679. 2018.PubMed/NCBI

62 

Han H, Wang L, Xu J and Wang A: miR-128 induces pancreas cancer cell apoptosis by targeting MDM4. Exp Ther Med. 15:5017–5022. 2018.PubMed/NCBI

63 

Zache N, Lambert JM, Rökaeus N, Shen J, Hainaut P, Bergman J, Wiman KG and Bykov VJ: Mutant p53 targeting by the low molecular weight compound STIMA-1. Mol Oncol. 2:70–80. 2008. View Article : Google Scholar : PubMed/NCBI

64 

Bykov VJ, Issaeva N, Shilov A, Hultcrantz M, Pugacheva E, Chumakov P, Bergman J, Wiman KG and Selivanova G: Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat Med. 8:282–288. 2002. View Article : Google Scholar : PubMed/NCBI

65 

Hiraki M, Hwang SY, Cao S, Ramadhar TR, Byun S, Yoon KW, Lee JH, Chu K, Gurkar AU, Kolev V, et al: Small-molecule reactivation of mutant p53 to wild-type-like p53 through the p53-Hsp40 regulatory axis. Chem Biol. 22:1206–1216. 2015. View Article : Google Scholar : PubMed/NCBI

66 

Bossi G and Sacchi A: Restoration of wild-type p53 function in human cancer: Relevance for tumor therapy. Head Neck. 29:272–284. 2007. View Article : Google Scholar : PubMed/NCBI

67 

Stad R, Little NA, Xirodimas DP, Frenk R, van der Eb AJ, Lane DP, Saville MK and Jochemsen AG: Mdmx stabilizes p53 and Mdm2 via two distinct mechanisms. EMBO Rep. 2:1029–1034. 2001. View Article : Google Scholar : PubMed/NCBI

68 

Garcia D, Warr MR, Martins CP, Brown Swigart L, Passegué E and Evan GI: Validation of MdmX as a therapeutic target for reactivating p53 in tumors. Genes Dev. 25:1746–1757. 2011. View Article : Google Scholar : PubMed/NCBI

69 

Danovi D, Meulmeester E, Pasini D, Migliorini D, Capra M, Frenk R, de Graaf P, Francoz S, Gasparini P, Gobbi A, et al: Amplification of Mdmx (or Mdm4) directly contributes to tumor formation by inhibiting p53 tumor suppressor activity. Mol Cell Biol. 24:5835–5843. 2004. View Article : Google Scholar : PubMed/NCBI

70 

Wang H, Ma X, Ren S, Buolamwini JK and Yan C: A small-molecule inhibitor of MDMX activates p53 and induces apoptosis. Mol Cancer Ther. 10:69–79. 2011. View Article : Google Scholar : PubMed/NCBI

71 

Reed D, Shen Y, Shelat AA, Arnold LA, Ferreira AM, Zhu F, Mills N, Smithson DC, Regni CA, Bashford D, et al: Identification and characterization of the first small molecule inhibitor of MDMX. J Biol Chem. 285:10786–10796. 2010. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

October 2019
Volume 42 Issue 4

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Karki, A., Putra, J., Kim, S.S., Laquaglia, M.J., Perez‑Atayde, A.R., Sadri‑Vakili, G., & Vakili, K. (2019). MDM4 expression in fibrolamellar hepatocellular carcinoma. Oncology Reports, 42, 1487-1496. https://doi.org/10.3892/or.2019.7241
MLA
Karki, A., Putra, J., Kim, S. S., Laquaglia, M. J., Perez‑Atayde, A. R., Sadri‑Vakili, G., Vakili, K."MDM4 expression in fibrolamellar hepatocellular carcinoma". Oncology Reports 42.4 (2019): 1487-1496.
Chicago
Karki, A., Putra, J., Kim, S. S., Laquaglia, M. J., Perez‑Atayde, A. R., Sadri‑Vakili, G., Vakili, K."MDM4 expression in fibrolamellar hepatocellular carcinoma". Oncology Reports 42, no. 4 (2019): 1487-1496. https://doi.org/10.3892/or.2019.7241