Open Access

Monoclonal anti‑MUC1 antibody with novel octahydropyrazino[2,1‑a:5,4‑a']diisoquinoline derivative as a potential multi‑targeted strategy in MCF‑7 breast cancer cells

  • Authors:
    • Agnieszka Gornowicz
    • Wojciech Szymanowski
    • Anna Bielawska
    • Anna Szymanowska
    • Robert Czarnomysy
    • Zbigniew Kałuża
    • Krzysztof Bielawski
  • View Affiliations

  • Published online on: August 2, 2019     https://doi.org/10.3892/or.2019.7256
  • Pages: 1391-1403
  • Copyright: © Gornowicz et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The aim of the present study was to examine the multi‑targeted potential of a monoclonal antibody against mucin‑1 (MUC1) and novel octahydropyrazin[2,1‑a:5,4‑a']diisoquinoline derivative (OM‑86II) in estrogen receptor‑positive MCF‑7 human breast cancer cells. The cell viability was measured by an MTT assay. The analyses of cell cycle and disruption of mitochondrial membrane potential were performed by flow cytometry. Fluorescent microscopy and flow cytometry were used to demonstrate the effect of the compounds on apoptosis. ELISA was conducted to check the concentrations of proteins involved in multiple intracellular signaling pathways, responsible for the promotion of tumor growth and breast cancer progression, namely matrix metalloproteinase (MMP)‑2, matrix MMP‑9, tumor necrosis factor‑α (TNF‑α), cyclooxygenase‑2 (COX‑2), soluble intercellular adhesion molecule 1 (sICAM1) and mTOR. The combination therapy based on anti‑MUC1 antibody and novel OM‑86II inhibited the proliferation of MCF‑7 breast cancer cells. Its inhibitory effects were associated with the induction of cell cycle arrest and apoptosis. It was demonstrated that anti‑MUC1 antibody with OM‑86II decreased the concentrations of MMP‑2, MMP‑9, sICAM1 and mTOR. In addition, the combined therapy exhibited anti‑inflammatory activity, which was demonstrated by a decrease in TNF‑α and COX‑2 concentrations. The present data provided evidence that the combination of anti‑MUC1 antibody with novel OM‑86II represents a multi‑targeted strategy in MCF‑7 breast cancer treatment.

References

1 

Anderson WF, Chatterjee N, Ershler WB and Brawley OW: Estrogen receptor breast cancer phenotypes in the surveillance, epidemiology, and end results database. Breast Cancer Res Treat. 76:27–36. 2002. View Article : Google Scholar : PubMed/NCBI

2 

Cleator SJ, Ahamed E, Coombes R and Palmieri CA: A 2009 update on the treatment of patients with hormone receptor-positive breast cancer. Clin Breast Cancer 9 Suppl. 1:S6–S17. 2009. View Article : Google Scholar

3 

Davies E and Hiscox S: New therapeutic approaches in breast cancer. Maturitas. 68:121–128. 2011. View Article : Google Scholar : PubMed/NCBI

4 

Nath S and Mukherjee P: MUC1: A multifaceted oncoprotein with a key role in cancer progression. Trends Mol Med. 20:332–342. 2014. View Article : Google Scholar : PubMed/NCBI

5 

Krishn SR, Kaur S, Smith LM, Johansson SL, Jain M, Patel A, Gautam SK, Hollingsworth MA, Mandel U, Clausen H, et al: Mucins and associated glycan signatures in colon adenoma-carcinoma sequence: Prospective pathological implication(s) for early diagnosis of colon cancer. Cancer Lett. 374:304–314. 2016. View Article : Google Scholar : PubMed/NCBI

6 

Hanson RL and Hollingsworth MA: Functional consequences of differential O-glycosylation of MUC1, MUC4, and MUC16 (downstream effects on signaling). Biomolecules. 6:E342016. View Article : Google Scholar : PubMed/NCBI

7 

Cascio S and Finn OJ: Intra- and extra-cellular events related to altered glycosylation of MUC1 promote chronic inflammation, tumor progression, invasion, and metastasis. Biomolecules. 6:E392016. View Article : Google Scholar : PubMed/NCBI

8 

Pawłowska N, Gornowicz A, Bielawska A, Surażyński A, Szymanowska A, Czarnomysy R and Bielawski K: The molecular mechanism of anticancer action of novel octahydropyrazino[2,1-a:5,4-a′]diisoquinoline derivatives in human gastric cancer cells. Invest New Drugs. 36:970–984. 2018. View Article : Google Scholar : PubMed/NCBI

9 

Gornowicz A, Pawłowska N, Czajkowska A, Czarnomysy R, Bielawska A, Bielawski K, Michalak O, Staszewska-Krajewska O and Kałuża Z: Biological evaluation of octahydropyrazin[2,1-a:5,4-a′]diisoquinoline derivatives as potent anticancer agents. Tumour Biol. 39:10104283177016412017. View Article : Google Scholar : PubMed/NCBI

10 

Cuya SM, Bjornsti MA and van Waardenburg RCAM: DNA topoisomerase-targeting chemotherapeutics: What's new? Cancer Chemother Pharmacol. 80:1–14. 2017. View Article : Google Scholar : PubMed/NCBI

11 

Kałuża Z, Bielawski K, Ćwiek R, Niedziejko P and Kaliski P: C2-symmetric hemiaminal ethers and diamines: New ligands for copper-catalyzed desymmetrization of meso-1,2-diols and asymmetric Henry reactions. Tetrahedron Asymmetry. 24:1435–1442. 2013. View Article : Google Scholar

12 

Carmichael J, DeGraff WG, Gazdar AF, Minna JD and Mitchell JB: Evaluation of a tetrazolium-based semiautomated colorimetric assay: Assessment of radiosensitivity. Cancer Res. 47:943–946. 1987.PubMed/NCBI

13 

Czarnomysy R, Surażyński A, Muszynska A, Gornowicz A, Bielawska A and Bielawski K: A novel series of pyrazole-platinum(II) complexes as potential anti-cancer agents that induce cell cycle arrest and apoptosis in breast cancer cells. J Enzyme Inhib Med Chem. 33:1006–1023. 2018. View Article : Google Scholar : PubMed/NCBI

14 

Singh SK, Moretta D, Almaguel F, Wall NR, De León M and De León D: Differential effect of proIGF-II and IGF-II on resveratrol induced cell death by regulating surviving cellular localization and mitochondrial depolarization in breast cancer cells. Growth Factors. 25:363–372. 2007. View Article : Google Scholar : PubMed/NCBI

15 

Gornowicz A, Bielawska A, Czarnomysy R, Gabryel-Porowska H, Muszyńska A and Bielawski K: The combined treatment with novel platinum(II) complex and anti-MUC1 increases apoptotic response in MDA-MB-231 breast cancer cells. Mol Cell Biochem. 408:103–113. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Gordon JL, Brown MA and Reynolds MM: Cell-based methods for determination of efficacy for candidate therapeutics in the clinical management of cancer. Diseases. 6:E852018. View Article : Google Scholar : PubMed/NCBI

17 

Hugo HJ, Saunders C, Ramsay RG and Thompson EW: New insights on COX-2 in chronic inflammation driving breast cancer growth and metastasis. J Mammary Gland Biol Neoplasia. 20:109–119. 2015. View Article : Google Scholar : PubMed/NCBI

18 

Romieu-Mourez R, François M, Abate A, Boivin MN, Birman E, Bailey D, Bramson JL, Forner K, Young YK, Medin JA and Galipeau J: Mesenchymal stromal cells expressing ErbB-2/neu elicit protective antibreast tumor immunity in vivo, which is paradoxically suppressed by IFN-gamma and tumor necrosis factor-alpha priming. Cancer Res. 70:7742–7747. 2010. View Article : Google Scholar : PubMed/NCBI

19 

Warren MA, Shoemaker SF, Shealy DJ, Bshar W and Ip MM: Tumor necrosis factor deficiency inhibits mammary tumorigenesis and a tumor necrosis factor neutralizing antibody decreases mammary tumor growth in neu/erbB2 transgenic mice. Mol Cancer Ther. 8:2655–2663. 2009. View Article : Google Scholar : PubMed/NCBI

20 

Houghton J, Li H, Fan X, Liu Y, Liu JH, Rao VP, Poutahidis T, Taylor CL, Jackson EA, Hewes C, et al: Mutations in bone marrow-derived stromal stem cells unmask latent malignancy. Stem Cells Dev. 19:1153–1166. 2010. View Article : Google Scholar : PubMed/NCBI

21 

Sangaletti S, Tripodo C, Ratti C, Piconese S, Porcasi R, Salcedo R, Trinchieri G, Colombo MP and Chiodoni C: Oncogene-driven intrinsic inflammation induces leukocyte production of tumor necrosis factor that critically contributes to mammary carcinogenesis. Cancer Res. 70:7764–7775. 2010. View Article : Google Scholar : PubMed/NCBI

22 

Hamaguchi T, Wakabayashi H, Matsumine A, Sudo A and Uchida A: TNF inhibitor suppresses bone metastasis in a breast cancer cell line. Biochem Biophys Res Commun. 407:525–530. 2011. View Article : Google Scholar : PubMed/NCBI

23 

Rubio MF, Werbajh S, Cafferata EG, Quaglino A, Coló GP, Nojek IM, Kordon EC, Nahmod VE and Costas MA: TNF-alpha enhances estrogen-induced cell proliferation of estrogen-dependent breast tumor cells through a complex containing nuclear factor-kappa B. Oncogene. 25:1367–1377. 2006. View Article : Google Scholar : PubMed/NCBI

24 

Rivas MA, Tkach M, Beguelin W, Proietti CJ, Rosemblit C, Charreau EH, Elizalde PV and Schillaci R: Transactivation of ErbB-2 induced by tumor necrosis factor alpha promotes NF-kappaB activation and breast cancer cell proliferation. Breast Cancer Res Treat. 122:111–124. 2010. View Article : Google Scholar : PubMed/NCBI

25 

Rivas MA, Carnevale RP, Proietti CJ, Rosemblit C, Beguelin W, Salatino M, Charreau EH, Frahm I, Sapia S, Brouckaert P, et al: TNF alpha acting on TNFR1 promotes breast cancer growth via p42/P44 MAPK, JNK, Akt and NF-kappa B-dependent pathways. Exp Cell Res. 314:509–529. 2008. View Article : Google Scholar : PubMed/NCBI

26 

Saal LH, Johansson P, Holm K, Gruvberger-Saal SK, She QB, Maurer M, Koujak S, Ferrando AA, Malmström P, Memeo L, et al: Poor prognosis in carcinoma is associated with a gene expression signature of aberrant PTEN tumor suppressor pathway activity. Proc Natl Acad Sci USA. 104:7564–7569. 2007. View Article : Google Scholar : PubMed/NCBI

27 

Engelman JA: Targeting PI3K signalling in cancer: Opportunities, challenges and limitations. Nat Rev Cancer. 9:550–562. 2009. View Article : Google Scholar : PubMed/NCBI

28 

Ciruelos Gil EM: Targeting the PI3K/AKT/mTOR pathway in estrogen receptor-positive breast cancer. Cancer Treat Rev. 40:862–871. 2014. View Article : Google Scholar : PubMed/NCBI

29 

Horm TM and Schroeder JA: MUC1 and metastatic cancer: Expression, function and therapeutic targeting. Cell Adh Migr. 7:187–198. 2013. View Article : Google Scholar : PubMed/NCBI

30 

Shen Q, Rahn JJ, Zhang J, Gunasekera N, Sun X, Shaw AR, Hendzel MJ, Hoffman P, Bernier A and Hugh JC: MUC1 initiates Src-CrkLRac1/Cdc42-mediated actin cytoskeletal protrusive motility after ligating intercellular adhesion molecule-1. Mol Cancer Res. 6:555–567. 2008. View Article : Google Scholar : PubMed/NCBI

31 

Sachdeva M and Mo YY: MicroRNA-145 suppresses cell invasion and metastasis by directly targeting mucin 1. Cancer Res. 70:378–387. 2010. View Article : Google Scholar : PubMed/NCBI

32 

Wei X, Xu H and Kufe D: MUC1 oncoprotein stabilizes and activates estrogen receptor alpha. Mol Cell. 21:295–305. 2006. View Article : Google Scholar : PubMed/NCBI

33 

Woo JK, Choi Y, Oh SH, Jeong JH, Choi DH, Seo HS and Kim CW: Mucin 1 enhances the tumor angiogenic response by activation of the AKT signaling pathway. Oncogene. 31:2187–2198. 2012. View Article : Google Scholar : PubMed/NCBI

34 

Mikami Y, Hisatsune A, Tashiro T, Isohama Y and Katsuki H: Hypoxia enhances MUC1 expression in a lung adenocarcinoma cell line. Biochem Biophys Res Commun. 379:1060–1065. 2009. View Article : Google Scholar : PubMed/NCBI

35 

Fessler SP, Wotkowicz MT, Mahanta SK and Bamdad C: MUC1* is a determinant of trastuzumab (Herceptin) resistance in breast cancer cells. Breast Cancer Res Treat. 118:113–124. 2009. View Article : Google Scholar : PubMed/NCBI

36 

Pillai K, Pourgholami MH, Chua TC and Morris DL: MUC1 as a potential target in anticancer therapies. Am J Clin Oncol. 38:108–118. 2015. View Article : Google Scholar : PubMed/NCBI

37 

Etti IC, Abdullah R, Kadir A, Hashim NM, Yeap SK, Imam MU, Ramli F, Malami I, Lam KL, Etti U, et al: The molecular mechanism of the anticancer effect of Artonin E in MDA-MB 231 triple negative breast cancer cells. PLoS One. 12:e01823572017. View Article : Google Scholar : PubMed/NCBI

38 

Kim SH, Turnbull J and Guimond S: Extracellular matrix and cell signalling: The dynamic cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol. 209:139–151. 2011. View Article : Google Scholar : PubMed/NCBI

39 

Walker C, Mojares E and Del Río Hernández A: Role of extracellular matrix in development and cancer progression. Int J Mol Sci. 19:E30282018. View Article : Google Scholar : PubMed/NCBI

40 

Jena MK and Janjanam J: Role of extracellular matrix in breast cancer development: A brief update. Version 2 F1000Res. 7:2742018. View Article : Google Scholar

41 

Fingleton B: Matrix metalloproteinases: Roles in cancer and metastasis. Front Biosci. 11:479–491. 2006. View Article : Google Scholar : PubMed/NCBI

42 

Leppä S, Saarto T, Vehmanen L, Blomqvist C and Elomaa I: A high serum matrix metalloproteinase-2 level is associated with an adverse prognosis in node-positive breast carcinoma. Clin Cancer Res. 10:1057–1063. 2004. View Article : Google Scholar : PubMed/NCBI

43 

Huang H: Matrix metalloproteinase-9 (MMP-9) as a cancer biomarker and MMP-9 biosensors: Recent advances. Sensors (Basel). 18:E32492018. View Article : Google Scholar : PubMed/NCBI

44 

Pellikainen JM, Ropponen KM, Kataja VV, Kellokoski JK, Eskelinen MJ and Kosma VM: Expression of matrix metalloproteinase (MMP)-2 and MMP-9 in breast cancer with a special reference to activator protein-2, HER2, and prognosis. Clin Cancer Res. 10:7621–7628. 2004. View Article : Google Scholar : PubMed/NCBI

45 

Di Cara G, Marabeti MR, Musso R, Riili I, Cancemi P and Pucci Minafra I: New insights into the occurrence of matrix metalloproteases −2 and −9 in a cohort of breast cancer patients and proteomic correlations. Cells. 7:E892018. View Article : Google Scholar : PubMed/NCBI

46 

Katanov C, Lerrer S, Liubomirski Y, Leider-Trejo L, Meshel T, Bar J, Feniger-Barish R, Kamer I, Soria-Artzi G, Kahani H, et al: Regulation of the inflammatory profile of stromal cells in human breast cancer: Prominent roles for TNF-α and the NF-κB pathway. Stem Cell Res Ther. 6:872015. View Article : Google Scholar : PubMed/NCBI

47 

Hosseini F, Hassannia H, Mahdian-Shakib A, Jadidi-Niaragh F, Enderami SE, Fattahi M, Anissian A, Mirshafiey A and Kokhaei P: Targeting of crosstalk between tumor and tumor microenvironment by β-D mannuronic acid (M2000) in murine breast cancer model. Cancer Med. 6:640–650. 2017. View Article : Google Scholar : PubMed/NCBI

48 

Miller TW, Rexer BN, Garrett JT and Arteaga CL: Mutations in the phosphatidylinositol 3-kinase pathway: Role in tumor progression and therapeutic implications in breast cancer. Breast Cancer Res. 13:2242011. View Article : Google Scholar : PubMed/NCBI

49 

Rahn JJ, Chow JW, Horne GJ, Mah BK, Emerman JT, Hoffman P and Hugh JC: MUC1 mediates transendothelial migration in vitro by ligating endothelial cell ICAM-1. Clin Exp Metastasis. 22:475–483. 2005. View Article : Google Scholar : PubMed/NCBI

50 

Thielemann A, Baszczuk A, Kopczyński Z, Nowak A and Grodecka-Gazdecka S: The clinical usefulness of assessing the concentration of cell adhesion molecules sVCAM-1 and sICAM-1 in the serum of women with primary breast cancer. Contemp Oncol (Pozn). 18:252–259. 2014.PubMed/NCBI

51 

Gornowicz A, Kałuża Z, Bielawska A, Gabryel-Porowska H, Czarnomysy R and Bielawski K: Cytotoxic efficacy of a novel dinuclear platinum(II) complex used with anti-MUC1 in human breast cancer cells. Mol Cell Biochem. 392:161–174. 2014. View Article : Google Scholar : PubMed/NCBI

52 

Wang L, Chen H, Pourgholami MH, Beretov J, Hao J, Chao H, Perkins AC, Kearsley JH and Li Y: Anti-MUC1 monoclonal antibody (C595) and docetaxel markedly reduce tumor burden and ascites, and prolong survival in an in vivo ovarian cancer model. PLoS One. 6:e244052011. View Article : Google Scholar : PubMed/NCBI

53 

Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, et al: Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 344:783–792. 2001. View Article : Google Scholar : PubMed/NCBI

54 

Raina D, Uchida Y, Kharbanda A, Rajabi H, Panchamoorthy G, Jin C, Kharbanda S, Scaltriti M, Baselga J and Kufe D: Targeting the MUC1-C oncoprotein downregulates HER2 activation and abrogates trastuzumab resistance in breast cancer cells. Oncogene. 33:3422–3431. 2014. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

October 2019
Volume 42 Issue 4

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Gornowicz, A., Szymanowski, W., Bielawska, A., Szymanowska, A., Czarnomysy, R., Kałuża, Z., & Bielawski, K. (2019). Monoclonal anti‑MUC1 antibody with novel octahydropyrazino[2,1‑a:5,4‑a']diisoquinoline derivative as a potential multi‑targeted strategy in MCF‑7 breast cancer cells. Oncology Reports, 42, 1391-1403. https://doi.org/10.3892/or.2019.7256
MLA
Gornowicz, A., Szymanowski, W., Bielawska, A., Szymanowska, A., Czarnomysy, R., Kałuża, Z., Bielawski, K."Monoclonal anti‑MUC1 antibody with novel octahydropyrazino[2,1‑a:5,4‑a']diisoquinoline derivative as a potential multi‑targeted strategy in MCF‑7 breast cancer cells". Oncology Reports 42.4 (2019): 1391-1403.
Chicago
Gornowicz, A., Szymanowski, W., Bielawska, A., Szymanowska, A., Czarnomysy, R., Kałuża, Z., Bielawski, K."Monoclonal anti‑MUC1 antibody with novel octahydropyrazino[2,1‑a:5,4‑a']diisoquinoline derivative as a potential multi‑targeted strategy in MCF‑7 breast cancer cells". Oncology Reports 42, no. 4 (2019): 1391-1403. https://doi.org/10.3892/or.2019.7256