Open Access

Casiopeina II‑gly acts on lncRNA MALAT1 by miR‑17‑5p to inhibit FZD2 expression via the Wnt signaling pathway during the treatment of cervical carcinoma

  • Authors:
    • Yunsheng Xu
    • Qianwen Zhang
    • Fan Lin
    • Li Zhu
    • Fangfang Huang
    • Liang Zhao
    • Rongying Ou
  • View Affiliations

  • Published online on: August 8, 2019     https://doi.org/10.3892/or.2019.7268
  • Pages: 1365-1379
  • Copyright: © Xu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The present study investigated the underlying regulatory network involved in the differential expression of metastasis associated lung adenocarcinoma transcript 1 (MALAT1) long non‑coding (lnc)RNA, microRNA‑17‑5p (miR‑17‑5p) and frizzled class receptor 2 (FZD2) mRNA under the influence of Casiopeina II‑gly (Cas‑II‑gly) via the Wnt signaling pathway in cervical carcinoma (CC). The gene expression data were obtained from the Gene Expression Omnibus database (https://www.ncbi.nlm.nih.gov/geo/), and the differentially expressed genes were determined using R software. The R ClusterProfiler and enrichplot packages were applied for gene‑set enrichment analysis based on the Gene Ontology biological process and Kyoto Encyclopedia of Genes and Genomes databases. TargetScan and the starBase database were used to predict the targeting associations between the miRNAs and lncRNAs/mRNAs. The MALAT1/miR‑17‑5p/mRNA FZD2 expression levels were measured via reverse transcription‑quantitative polymerase chain reaction. The protein expression was monitored by western blot analysis. The target association among the lncRNA MALAT1, miR‑17‑5p and FZD2 was validated via a dual luciferase reporter assay. Cell viability and apoptosis were determined via MTT assays, EdU staining and flow cytometry. The results indicated that the expression levels of lncRNA MALAT1 and FZD2 mRNA were downregulated, while miR‑17‑5p expression was upregulated in HeLa and CaSki cells treated with increasing Cas‑II‑gly concentrations. The cell viability was decreased, and the apoptosis rate was increased in HeLa and CaSki cells following Cas‑II‑gly treatment. Furthermore, western blot analysis results demonstrated that Cas‑II‑gly and the MALAT1/miR‑17‑5p/FZD2 axis could affect the expression of proteins associated with the Wnt signaling pathway, including disheveled segment polarity protein, glycogen synthase kinase‑3β and β‑catenin, and via the MALAT1/miR‑17‑5p/FZD2/Wnt signaling pathway axis.

References

1 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2018. CA Cancer J Clin. 68:7–30. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Tewari KS and Monk BJ: New strategies in advanced cervical cancer: From angiogenesis blockade to immunotherapy. Clin Cancer Res. 20:5349–5358. 2014. View Article : Google Scholar : PubMed/NCBI

3 

McLaughlin-Drubin ME and Münger K: The human papillomavirus E7 oncoprotein. Virology. 384:335–344. 2009. View Article : Google Scholar : PubMed/NCBI

4 

Scheffner M, Werness BA, Huibregtse JM, Levine AJ and Howley PM: The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell. 63:1129–1136. 1990. View Article : Google Scholar : PubMed/NCBI

5 

Leal-Garcia M, Garcia-Ortuno L, Ruiz-Azuara L, Gracia-Mora I, Luna-Delvillar J and Sumano H: Assessment of acute respiratory and cardiovascular toxicity of casiopeinas in anaesthetized dogs. Basic Clin Pharmacol Toxicol. 101:151–158. 2007. View Article : Google Scholar : PubMed/NCBI

6 

Chikira M, Tomizawa Y, Fukita D, Sugizaki T, Sugawara N, Yamazaki T, Sasano A, Shindo H, Palaniandavar M and Antholine WE: DNA-fiber EPR study of the orientation of Cu(II) complexes of 1,10-phenanthroline and its derivatives bound to DNA: Mono(phenanthroline)-copper(II) and its ternary complexes with amino acids. J Inorg Biochem. 89:163–173. 2002. View Article : Google Scholar : PubMed/NCBI

7 

Valencia-Cruz AI, Uribe-Figueroa LI, Galindo-Murillo R, Baca-López K, Gutiérrez AG, Vázquez-Aguirre A, Ruiz-Azuara L, Hernández-Lemus E and Mejía C: Whole genome gene expression analysis reveals casiopeina-induced apoptosis pathways. PLoS One. 8:e546642013. View Article : Google Scholar : PubMed/NCBI

8 

Alemón-Medina R, Muñoz-Sánchez JL, Ruiz-Azuara L and Gracia-Mora I: Casiopeina IIgly induced cytotoxicity to HeLa cells depletes the levels of reduced glutathione and is prevented by dimethyl sulfoxide. Toxicol In Vitro. 22:710–715. 2008. View Article : Google Scholar : PubMed/NCBI

9 

Winegarden N: Microarrays in cancer: Moving from hype to clinical reality. Lancet. 362:14282003. View Article : Google Scholar : PubMed/NCBI

10 

Brown H: The real value of microarray technology. Lancet Oncol. 4:3262003. View Article : Google Scholar : PubMed/NCBI

11 

Butte A: The use and analysis of microarray data. Nat Rev Drug Discov. 1:951–960. 2002. View Article : Google Scholar : PubMed/NCBI

12 

Jin X, Chen X, Hu Y, Ying F, Zou R, Lin F, Shi Z, Zhu X, Yan X, Li S and Zhu H: LncRNA-TCONS_00026907 is involved in the progression and prognosis of cervical cancer through inhibiting miR-143-5p. Cancer Med. 6:1409–1423. 2017. View Article : Google Scholar : PubMed/NCBI

13 

Xia YF, Pei GH, Wang N, Che YC, Yu FS, Yin FF, Liu HX, Luo B and Wang YK: miR-3156-3p is downregulated in HPV-positive cervical cancer and performs as a tumor-suppressive miRNA. Virol J. 14:202017. View Article : Google Scholar : PubMed/NCBI

14 

Li X, Tian R, Gao H, Yang Y, Williams BRG, Gantier MP, McMillan NAJ, Xu D, Hu Y and Gao Y: Identification of a histone family gene signature for predicting the prognosis of cervical cancer patients. Sci Rep. 7:164952017. View Article : Google Scholar : PubMed/NCBI

15 

Liao XH, Xiang Y, Yu CX, Li JP, Li H, Nie Q, Hu P, Zhou J and Zhang TC: STAT3 is required for MiR-17-5p-mediated sensitization to chemotherapy-induced apoptosis in breast cancer cells. Oncotarget. 8:15763–15774. 2017. View Article : Google Scholar : PubMed/NCBI

16 

Liang B, Li Y and Wang T: A three miRNAs signature predicts survival in cervical cancer using bioinformatics analysis. Sci Rep. 7:56242017. View Article : Google Scholar : PubMed/NCBI

17 

Liang X, Liu Y, Zeng L, Yu C, Hu Z, Zhou Q and Yang Z: miR-101 inhibits the G1-to-S phase transition of cervical cancer cells by targeting Fos. Int J Gynecol Cancer. 24:1165–1172. 2014. View Article : Google Scholar : PubMed/NCBI

18 

Zhao Y, Huang J, Liu T, He S, Shang C, Guo L, Du Q and Yao S: Overexpression of long non-coding RNA RP11-396F22.1 correlates poor prognosis of patients with early-stage cervical cancer. Am J Transl Res. 10:684–695. 2018.PubMed/NCBI

19 

Fan Y, Nan Y, Huang J, Zhong H and Zhou W: Up-regulation of inflammation-related LncRNA-IL7R predicts poor clinical outcome in patients with cervical cancer. Biosci Rep. 38(pii): BSR201804832018. View Article : Google Scholar : PubMed/NCBI

20 

Ma TT, Zhou LQ, Xia JH, Shen Y, Yan Y and Zhu RH: LncRNA PCAT-1 regulates the proliferation, metastasis and invasion of cervical cancer cells. Eur Rev Med Pharmacol Sci. 22:1907–1913. 2018.PubMed/NCBI

21 

Gao D, Zhang Y, Zhu M, Liu S and Wang X: miRNA expression profiles of HPV-infected patients with cervical cancer in the uyghur population in China. PLoS One. 11:e01647012016. View Article : Google Scholar : PubMed/NCBI

22 

Jiang L, Shi S, Shi Q, Zhang H, Xia Y and Zhong T: MicroRNA-519d-3p inhibits proliferation and promotes apoptosis by targeting HIF-2α in cervical cancer under hypoxic conditions. Oncol Res. 26:1055–1062. 2018. View Article : Google Scholar : PubMed/NCBI

23 

Cai N, Hu L, Xie Y, Gao JH, Zhai W, Wang L, Jin QJ, Qin CY and Qiang R: MiR-17-5p promotes cervical cancer cell proliferation and metastasis by targeting transforming growth factor-β receptor 2. Eur Rev Med Pharmacol Sci. 22:1899–1906. 2018.PubMed/NCBI

24 

Rui X, Xu Y, Jiang X, Ye W, Huang Y and Jiang J: Long non-coding RNA C5orf66-AS1 promotes cell proliferation in cervical cancer by targeting miR-637/RING1 axis. Cell Death Dis. 9:11752018. View Article : Google Scholar : PubMed/NCBI

25 

Liang H, Zhang C, Guan H, Liu J and Cui Y: LncRNA DANCR promotes cervical cancer progression by upregulating ROCK1 via sponging miR-335-5p. J Cell Physiol. 234:7266–7278. 2019. View Article : Google Scholar : PubMed/NCBI

26 

Chen X, Xiong D, Yang H, Ye L, Mei S, Wu J, Chen S, Shang X, Wang K and Huang L: Long noncoding RNA OPA-interacting protein 5 antisense transcript 1 upregulated SMAD3 expression to contribute to metastasis of cervical cancer by sponging miR-143-3p. J Cell Physiol. 234:5264–5275. 2019. View Article : Google Scholar : PubMed/NCBI

27 

Zheng P, Yin Z, Wu Y, Xu Y, Luo Y and Zhang TC: LncRNA HOTAIR promotes cell migration and invasion by regulating MKL1 via inhibition miR206 expression in HeLa cells. Cell Commun Signal. 16:52018. View Article : Google Scholar : PubMed/NCBI

28 

Feng Y, Zou W, Hu C, Li G, Zhou S, He Y, Ma F, Deng C and Sun L: Modulation of CASC2/miR-21/PTEN pathway sensitizes cervical cancer to cisplatin. Arch Biochem Biophys. 623-624:20–30. 2017. View Article : Google Scholar : PubMed/NCBI

29 

Yang M, Wang M, Li X, Xie Y, Xia X, Tian J, Zhang K and Tang A: Wnt signaling in cervical cancer? J Cancer. 9:1277–1286. 2018. View Article : Google Scholar : PubMed/NCBI

30 

Gupta S, Kumar P and Das BC: HPV: Molecular pathways and targets. Curr Probl Cancer. 42:161–174. 2018. View Article : Google Scholar : PubMed/NCBI

31 

Li P, Hu J, Zhang Y, Li J, Dang Y, Zhang R, Wei L and Shi M: miR-182 promotes cell proliferation of cervical cancer cells by targeting adenomatous polyposis coli (APC) gene. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 34:148–153. 2018.(In Chinese). PubMed/NCBI

32 

Smyth GK: Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 3:Article32004. View Article : Google Scholar : PubMed/NCBI

33 

Hollander SL: An unusual case of chronic lymphocytic leukemia. J Med. 22:289–297. 1991.PubMed/NCBI

34 

Yu G, Wang LG, Han Y and He QY: ClusterProfiler: An R package for comparing biological themes among gene clusters. OMICS. 16:284–287. 2012. View Article : Google Scholar : PubMed/NCBI

35 

Kanehisa M, Goto S, Sato Y, Furumichi M and Tanabe M: KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40:D109–D114. 2012. View Article : Google Scholar : PubMed/NCBI

36 

Prieto C, Risueno A, Fontanillo C and De las Rivas J: Human gene coexpression landscape: Confident network derived from tissue transcriptomic profiles. PLoS One. 3:e39112008. View Article : Google Scholar : PubMed/NCBI

37 

Bravo-Gómez ME, Garcia-Ramos JC, Gracia-Mora I and Ruiz-Azuara L: Antiproliferative activity and QSAR study of copper(II) mixed chelate [Cu(N-N)(acetylacetonato)]NO3 and [Cu(N-N)(glycinato)]NO3 complexes, (Casiopeinas). J Inorg Biochem. 103:299–309. 2009. View Article : Google Scholar : PubMed/NCBI

38 

Alemon-Medina R, Bravo-Gomez ME, Gracia-Mora MI and Ruiz-Azuara L: Comparison between the antiproliferative effect and intracellular glutathione depletion induced by Casiopeina IIgly and cisplatin in murine melanoma B16 cells. Toxicol In Vitro. 25:868–873. 2011. View Article : Google Scholar : PubMed/NCBI

39 

Richter K, Haslbeck M and Buchner J: The heat shock response: Life on the verge of death. Mol Cell. 40:253–266. 2010. View Article : Google Scholar : PubMed/NCBI

40 

Isserlin R, Merico D, Voisin V and Bader GD: Enrichment Map-a Cytoscape app to visualize and explore OMICs pathway enrichment results. F1000Res. 3:1412014. View Article : Google Scholar : PubMed/NCBI

41 

Marin-Hernandez A, Gracia-Mora I, Ruiz-Ramirez L and Moreno-Sanchez R: Toxic effects of copper-based antineoplastic drugs (Casiopeinas) on mitochondrial functions. Biochem Pharmacol. 65:1979–1989. 2003. View Article : Google Scholar : PubMed/NCBI

42 

Correia I, Borovic S, Cavaco I, Matos CP, Roy S, Santos HM, Fernandes L, Capelo JL, Ruiz-Azuara L and Pessoa JC: Evaluation of the binding of four anti-tumor Casiopeínas® to human serum albumin. J Inorg Biochem. 175:284–297. 2017. View Article : Google Scholar : PubMed/NCBI

43 

Zhang W and Liu HT: MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 12:9–18. 2002. View Article : Google Scholar : PubMed/NCBI

44 

Trejo-Solis C, Palencia G, Zuniga S, Rodríguez-Ropon A, Osorio-Rico L, Luvia ST, Gracia-Mora I, Marquez-Rosado L, Sánchez A, Moreno-García ME, et al: Cas IIgly induces apoptosis in glioma C6 cells in vitro and in vivo through caspase-dependent and caspase-independent mechanisms. Neoplasia. 7:563–574. 2005. View Article : Google Scholar : PubMed/NCBI

45 

De Vizcaya-Ruiz A, Rivero-Muller A, Ruiz-Ramirez L, Kass GE, Kelland LR, Orr RM and Dobrota M: Induction of apoptosis by a novel copper-based anticancer compound, casiopeina II, in L1210 murine leukaemia and CH1 human ovarian carcinoma cells. Toxicol In Vitro. 14:1–5. 2000. View Article : Google Scholar : PubMed/NCBI

46 

Rivero-Muller A, De Vizcaya-Ruiz A, Plant N, Ruiz L and Dobrota M: Mixed chelate copper complex, Casiopeina IIgly, binds and degrades nucleic acids: A mechanism of cytotoxicity. Chem Biol Interact. 165:189–199. 2007. View Article : Google Scholar : PubMed/NCBI

47 

Xia C, Liang S, He Z, Zhu X, Chen R and Chen J: Metformin, a first-line drug for type 2 diabetes mellitus, disrupts the MALAT1/miR-142-3p sponge to decrease invasion and migration in cervical cancer cells. Eur J Pharmacol. 830:59–67. 2018. View Article : Google Scholar : PubMed/NCBI

48 

Ji Q, Zhang L, Liu X, Zhou L, Wang W, Han Z, Sui H, Tang Y, Wang Y, Liu N, et al: Long non-coding RNA MALAT1 promotes tumour growth and metastasis in colorectal cancer through binding to SFPQ and releasing oncogene PTBP2 from SFPQ/PTBP2 complex. Br J Cancer. 111:736–748. 2014. View Article : Google Scholar : PubMed/NCBI

49 

Dong Y, Liang G, Yuan B, Yang C, Gao R and Zhou X: MALAT1 promotes the proliferation and metastasis of osteosarcoma cells by activating the PI3K/Akt pathway. Tumour Biol. 36:1477–1486. 2015. View Article : Google Scholar : PubMed/NCBI

50 

Xiao H, Tang K, Liu P, Chen K, Hu J, Zeng J, Xiao W, Yu G, Yao W, Zhou H, et al: LncRNA MALAT1 functions as a competing endogenous RNA to regulate ZEB2 expression by sponging miR-200s in clear cell kidney carcinoma. Oncotarget. 6:38005–38015. 2015. View Article : Google Scholar : PubMed/NCBI

51 

Zhang HM, Yang FQ, Chen SJ, Che J and Zheng JH: Upregulation of long non-coding RNA MALAT1 correlates with tumor progression and poor prognosis in clear cell renal cell carcinoma. Tumour Biol. 36:2947–2955. 2015. View Article : Google Scholar : PubMed/NCBI

52 

Li C, Chen H, Hu L, Xing Y, Sasaki T, Villosis MF, Li J, Nishita M, Minami Y and Minoo P: Ror2 modulates the canonical Wnt signaling in lung epithelial cells through cooperation with Fzd2. BMC Mol Biol. 9:112008. View Article : Google Scholar : PubMed/NCBI

53 

Bian Y, Chang X, Liao Y, Wang J, Li Y, Wang K and Wan X: Promotion of epithelial-mesenchymal transition by Frizzled2 is involved in the metastasis of endometrial cancer. Oncol Rep. 36:803–810. 2016. View Article : Google Scholar : PubMed/NCBI

54 

Zhang E, Li Z, Xu Z, Duan W, Sun C and Lu L: Frizzled2 mediates the migration and invasion of human oral squamous cell carcinoma cells through the regulation of the signal transducer and activator of transcription-3 signaling pathway. Oncol Rep. 34:3061–3067. 2015. View Article : Google Scholar : PubMed/NCBI

55 

Ding LC, Huang XY, Zheng FF, Xie J, She L, Feng Y, Su BH, Zheng DL and Lu YG: FZD2 inhibits the cell growth and migration of salivary adenoid cystic carcinomas. Oncol Rep. 35:1006–1012. 2016. View Article : Google Scholar : PubMed/NCBI

56 

Garzon R and Croce CM: MicroRNAs in normal and malignant hematopoiesis. Curr Opin Hematol. 15:352–358. 2008. View Article : Google Scholar : PubMed/NCBI

57 

Wei Q, Li YX, Liu M, Li X and Tang H: MiR-17-5p targets TP53INP1 and regulates cell proliferation and apoptosis of cervical cancer cells. IUBMB Life. 64:697–704. 2012. View Article : Google Scholar : PubMed/NCBI

58 

Hu J, Wang Z, Shan Y, Pan Y, Ma J and Jia L: Long non-coding RNA HOTAIR promotes osteoarthritis progression via miR-17-5p/FUT2/β-catenin axis. Cell Death Dis. 9:7112018. View Article : Google Scholar : PubMed/NCBI

59 

He Z, Liao Z, Chen S, Li B, Yu Z, Luo G, Yang L, Zeng C and Li Y: Downregulated miR-17, miR-29c, miR-92a and miR-214 may be related to BCL11B overexpression in T cell acute lymphoblastic leukemia. Asia Pac J Clin Oncol. 14:e259–e265. 2018. View Article : Google Scholar : PubMed/NCBI

60 

Li Z, Lu J, Sun M, Mi S, Zhang H, Luo RT, Chen P, Wang Y, Yan M, Qian Z, et al: Distinct microRNA expression profiles in acute myeloid leukemia with common translocations. Proc Natl Acad Sci USA. 105:15535–15540. 2008. View Article : Google Scholar : PubMed/NCBI

61 

Liu S, Song L, Zeng S and Zhang L: MALAT1-miR-124-RBG2 axis is involved in growth and invasion of HR-HPV-positive cervical cancer cells. Tumour Biol. 37:633–640. 2016. View Article : Google Scholar : PubMed/NCBI

62 

Chen W, Zhao W, Zhang L, Wang L, Wang J, Wan Z, Hong Y and Yu L: MALAT1-miR-101-SOX9 feedback loop modulates the chemo-resistance of lung cancer cell to DDP via Wnt signaling pathway. Oncotarget. 8:94317–94329. 2017.PubMed/NCBI

63 

Chen W, Xu XK, Li JL, Kong KK, Li H, Chen C, He J, Wang F, Li P, Ge XS and Li FC: MALAT1 is a prognostic factor in glioblastoma multiforme and induces chemoresistance to temozolomide through suppressing miR-203 and promoting thymidylate synthase expression. Oncotarget. 8:22783–22799. 2017.PubMed/NCBI

64 

Pećina-Slaus N: Wnt signal transduction pathway and apoptosis: A review. Cancer Cell Int. 10:222010. View Article : Google Scholar : PubMed/NCBI

65 

Chen S, Guttridge DC, You Z, Zhang Z, Fribley A, Mayo MW, Kitajewski J and Wang CY: Wnt-1 signaling inhibits apoptosis by activating beta-catenin/T cell factor-mediated transcription. J Cell Biol. 152:87–96. 2001. View Article : Google Scholar : PubMed/NCBI

66 

You L, He B, Uematsu K, Xu Z, Mazieres J, Lee A, McCormick F and Jablons DM: Inhibition of Wnt-1 signaling induces apoptosis in beta-catenin-deficient mesothelioma cells. Cancer Res. 64:3474–3478. 2004. View Article : Google Scholar : PubMed/NCBI

67 

Li F, Chong ZZ and Maiese K: Winding through the WNT pathway during cellular development and demise. Histol Histopathol. 21:103–124. 2006.PubMed/NCBI

68 

Uematsu K, He B, You L, Xu Z, McCormick F and Jablons DM: Activation of the Wnt pathway in non small cell lung cancer: Evidence of dishevelled overexpression. Oncogene. 22:7218–7221. 2003. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

October 2019
Volume 42 Issue 4

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Xu, Y., Zhang, Q., Lin, F., Zhu, L., Huang, F., Zhao, L., & Ou, R. (2019). Casiopeina II‑gly acts on lncRNA MALAT1 by miR‑17‑5p to inhibit FZD2 expression via the Wnt signaling pathway during the treatment of cervical carcinoma. Oncology Reports, 42, 1365-1379. https://doi.org/10.3892/or.2019.7268
MLA
Xu, Y., Zhang, Q., Lin, F., Zhu, L., Huang, F., Zhao, L., Ou, R."Casiopeina II‑gly acts on lncRNA MALAT1 by miR‑17‑5p to inhibit FZD2 expression via the Wnt signaling pathway during the treatment of cervical carcinoma". Oncology Reports 42.4 (2019): 1365-1379.
Chicago
Xu, Y., Zhang, Q., Lin, F., Zhu, L., Huang, F., Zhao, L., Ou, R."Casiopeina II‑gly acts on lncRNA MALAT1 by miR‑17‑5p to inhibit FZD2 expression via the Wnt signaling pathway during the treatment of cervical carcinoma". Oncology Reports 42, no. 4 (2019): 1365-1379. https://doi.org/10.3892/or.2019.7268