Open Access

Role and mechanism of organic cation transporter 3 in oxaliplatin treatment of colon cancer in vitro and in vivo

  • Authors:
    • Juan Gu
    • Ling Wang
    • Tingting Li
    • Shiwei Tang
    • Yuhe Wang
    • Wei Zhang
    • Xuehua Jiang
  • View Affiliations

  • Published online on: August 7, 2019     https://doi.org/10.3892/or.2019.7267
  • Pages: 1355-1364
  • Copyright : © Gu et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Oxaliplatin (OXA) is routinely used as the first‑line treatment for colorectal cancer (CRC). The addition of OXA to chemotherapy has significantly improved the prognosis of patients with CRC; however, some cases are resistant to OXA. The present study explored the influence of organic cation transporter 3 (OCT3) expression on the effects of OXA on CRC cell viability, and investigated the direct effects of OCT3 on viability, invasion and migration of CRC cells using MTT assay, wound healing assay, reverse transcription‑quantitative polymerase chain reaction, inductively coupled plasma mass spectrometry and lentiviral interference. The results demonstrated that OXA cellular concentration and OXA‑induced cytotoxicity were significantly increased in response to high expression of OCT3, whereas OCT3 knockdown directly increased the invasion and migration of colon cancer cells. Furthermore, upregulation of OCT3 expression in colon cancer xenografts via treatment with the DNA methyltransferase inhibitor decitabine increased cellular OXA concentration and improved the curative effect of OXA. These results collectively indicated that OCT3 may enhance the effects of OXA in CRC cells and may directly inhibit their invasion and migration. Therefore, OCT3 may be a therapeutic target in patients with CRC.

References

1 

Perego P and Robert J: Oxaliplatin in the era of personalized medicine: From mechanistic studies to clinical efficacy. Cancer Chemother Pharmacol. 77:5–18. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Martinez-Balibrea E, Martinez-Cardus A, Gines A, Ruiz de Porras V, Moutinho C, Layos L, Manzano JL, Bugés C, Bystrup S, Esteller M and Abad A: Tumor-Related molecular mechanisms of oxaliplatin resistance. Mol Cancer Ther. 14:1767–1776. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Buss I, Garmann D, Galanski M, Weber G, Kalayda GV, Keppler BK and Jaehde U: Enhancing lipophilicity as a strategy to overcome resistance against platinum complexes. J Inorg Biochem. 105:709–717. 2011. View Article : Google Scholar : PubMed/NCBI

4 

Oguri T, Kunii E, Fukuda S, Sone K, Uemura T, Takakuwa O, Kanemitsu Y, Ohkubo H, Takemura M, Maeno K, et al: Organic cation transporter 6 directly confers resistance to anticancer platinum drugs. Biomed Rep. 5:639–643. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Wu X, Kekuda R, Huang W, Fei YJ, Leibach FH, Chen J, Conway SJ and Ganapathy V: Identity of the organic cation transporter OCT3 as the extraneuronal monoamine transporter (uptake2) and evidence for the expression of the transporter in the brain. J Biol Chem. 273:32776–32786. 1998. View Article : Google Scholar : PubMed/NCBI

6 

Koepsell H: Polyspecific organic cation transporters: Their functions and interactions with drugs. Trends Pharmacol Sci. 25:375–381. 2004. View Article : Google Scholar : PubMed/NCBI

7 

Yokoo S, Masuda S, Yonezawa A, Terada T, Katsura T and Inui K: Significance of organic cation transporter 3 (SLC22A3) expression for the cytotoxic effect of oxaliplatin in colorectal cancer. Drug Metab Dispos. 36:2299–2306. 2008. View Article : Google Scholar : PubMed/NCBI

8 

Zhang S, Lovejoy KS, Shima JE, Lagpacan LL, Shu Y, Lapuk A, Chen Y, Komori T, Gray JW, Chen X, et al: Organic cation transporters are determinants of oxaliplatin cytotoxicity. Cancer Res. 66:8847–8857. 2006. View Article : Google Scholar : PubMed/NCBI

9 

Grisanzio C, Werner L, Takeda D, Awoyemi BC Pomerantz MM, Yamada H, Sooriakumaran P, Robinson BD Leung R, Schinzel AC, et al: Genetic and functional analyses implicate the NUDT11, HNF1B, and SLC22A3 genes in prostate cancer pathogenesis. Proc Natl Acad Sci USA. 109:11252–11257. 2012. View Article : Google Scholar : PubMed/NCBI

10 

Vollmar J, Lautem A, Closs E, Schuppan D, Kim YO, Grimm D, Marquardt JU, Fuchs P, Straub BK, Schad A, et al: Loss of organic cation transporter 3 (Oct3) leads to enhanced proliferation and hepatocarcinogenesis. Oncotarget. 8:115667–115680. 2017. View Article : Google Scholar : PubMed/NCBI

11 

Xiong JX, Wang YS, Sheng J, Xiang D, Huang TX, Tan BB, Zeng CM, Li HH, Yang J, Meltzer SJ, et al: Epigenetic alterations of a novel antioxidant gene SLC22A3 predispose susceptible individuals to increased risk of esophageal cancer. Int J Biol Sci. 14:1658–1668. 2018. View Article : Google Scholar : PubMed/NCBI

12 

Fu L, Qin YR, Ming XY, Zuo XB, Diao YW, Zhang LY, Ai J, Liu BL, Huang TX, Cao TT, et al: RNA editing of SLC22A3 drives early tumor invasion and metastasis in familial esophageal cancer. Proc Natl Acad Sci USA. 114:E4631–E4640. 2017. View Article : Google Scholar : PubMed/NCBI

13 

Guo C, Ma J, Deng G, Qu Y, Yin L, Li Y, Han Y, Cai C, Shen H and Zeng S: ZEB1 promotes oxaliplatin resistance through the induction of epithelial-mesenchymal transition in colon cancer cells. J Cancer. 8:3555–3566. 2017. View Article : Google Scholar : PubMed/NCBI

14 

Siegel R, Naishadham D and Jemal A: Cancer statistics, 2013. CA Cancer J Clin. 63:11–30. 2013. View Article : Google Scholar : PubMed/NCBI

15 

Kaiser C, Meurice N, Gonzales IM, Arora S, Beaudry C, Bisanz KM, Robeson AC, Petit J and Azorsa DO: Chemogenomic analysis identifies Macbecin II as a compound specific for SMAD4-negative colon cancer cells. Chem Biol Drug Des. 75:360–368. 2010. View Article : Google Scholar : PubMed/NCBI

16 

Luebeck GE, Hazelton WD, Curtius K, Maden SK, Yu M, Carter KT, Burke W, Lampe PD, Li CI, Ulrich CM, et al: Implications of epigenetic drift in colorectal neoplasia. Cancer Res. 79:495–504. 2019. View Article : Google Scholar : PubMed/NCBI

17 

Zhou C, Pan R, Hu H, Li B, Dai J, Ying X, Yu H, Zhong J, Mao Y, Zhang Y, et al: TNFRSF10C methylation is a new epigenetic biomarker for colorectal cancer. PeerJ. 6:e53362018. View Article : Google Scholar : PubMed/NCBI

18 

Chu CH, Chang SC, Wang HH, Yang SH, Lai KC and Lee TC: Prognostic values of EPDR1 hypermethylation and its inhibitory function on tumor invasion in colorectal cancer. Cancers (Basel). 10:E3932018. View Article : Google Scholar : PubMed/NCBI

19 

Yokoi K, Harada H, Yokota K, Ishii S, Tanaka T, Nishizawa N, Shimazu M, Kojo K, Miura H, Yamanashi T, et al: Epigenetic status of CDO1 gene may reflect chemosensitivity in colon cancer with postoperative adjuvant chemotherapy. Ann Surg Oncol. 26:406–414. 2018. View Article : Google Scholar : PubMed/NCBI

20 

Li LC and Dahiya R: MethPrimer: Designing primers for methylation PCRs. Bioinformatics. 18:1427–1431. 2002. View Article : Google Scholar : PubMed/NCBI

21 

Tanaka S, Hosokawa M, Ueda K and Iwakawa S: Effects of decitabine on invasion and exosomal expression of miR-200c and miR-141 in oxaliplatin-resistant colorectal cancer cells. Biol Pharm Bull. 38:1272–1279. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

23 

Cao LL, Pei XF, Qiao X, Yu J, Ye H, Xi CL, Wang PY and Gong ZL: SERPINA3 silencing inhibits the migration, invasion, and liver metastasis of colon cancer cells. Dig Dis Sci. 63:2309–2319. 2018. View Article : Google Scholar : PubMed/NCBI

24 

Chen Z, Ji N, Wang Z, Wu C, Sun Z, Li Y, Hu F, Wang Z, Huang M and Zhang M: Fine particulate matter (PM25) promoted the invasion of lung cancer cells via an ARNT2/PP2A/STAT3/MMP2 pathway. J Biomed Nanotechnol. 15:4162019. View Article : Google Scholar : PubMed/NCBI

25 

Shnitsar V, Eckardt R, Gupta S, Grottker J, Müller GA, Koepsell H, Burckhardt G and Hagos Y: Expression of human organic cation transporter 3 in kidney carcinoma cell lines increases chemosensitivity to melphalan, irinotecan, and vincristine. Cancer Res. 69:1494–1501. 2009. View Article : Google Scholar : PubMed/NCBI

26 

Hsu CM, Lin PM, Chang JG, Lin HC, Li SH, Lin SF and Yang MY: Upregulated SLC22A3 has a potential for improving survival of patients with head and neck squamous cell carcinoma receiving cisplatin treatment. Oncotarget. 8:74348–74358. 2017. View Article : Google Scholar : PubMed/NCBI

27 

Hagiwara H, Sato H, Ohde Y, Takano Y, Seki T, Ariga T, Hokaiwado N, Asamoto M, Shirai T, Nagashima Y and Yano T: 5-Aza-2′-deoxycytidine suppresses human renal carcinoma cell growth in a xenograft model via up-regulation of the connexin 32 gene. Br J Pharmacol. 153:1373–1381. 2008. View Article : Google Scholar : PubMed/NCBI

28 

Qin T, Jelinek J, Si J, Shu J and Issa JP: Mechanisms of resistance to 5-aza-2′-deoxycytidine in human cancer cell lines. Blood. 113:659–667. 2009. View Article : Google Scholar : PubMed/NCBI

29 

Hosokawa M, Saito M, Nakano A, Iwashita S, Ishizaka A, Ueda K and Iwakawa S: Acquired resistance to decitabine and cross-resistance to gemcitabine during the long-term treatment of human HCT116 colorectal cancer cells with decitabine. Oncol Lett. 10:761–767. 2015. View Article : Google Scholar : PubMed/NCBI

30 

Zhao H, Zhu H, Huang J, Zhu Y, Hong M, Zhu H, Zhang J, Li S, Yang L, Lian Y, et al: The synergy of vitamin C with decitabine activates TET2 in leukemic cells and significantly improves overall survival in elderly patients with acute myeloid leukemia. Leuk Res. 66:1–7. 2018. View Article : Google Scholar : PubMed/NCBI

31 

Egeblad M and Werb Z: New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2:161–174. 2002. View Article : Google Scholar : PubMed/NCBI

32 

Zhu XH, Wang JM, Yang SS, Wang FF, Hu JL, Xin SN, Men H, Lu GF, Lan XL, Zhang D, et al: Down-regulation of DAB2IP promotes colorectal cancer invasion and metastasis by translocating hnRNPK into nucleus to enhance the transcription of MMP2. Int J Cancer. 141:172–183. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Hu T, Wang L, Pan XL and Qi HL: Novel compound, organic cation transporter 3 detection agent and organic cation transporter 3 activity inhibitor, WO2015002150 A1: A patent evaluation. Expert Opin Ther Pat. 26:857–860. 2016. View Article : Google Scholar : PubMed/NCBI

34 

Pan X, Iyer KA, Liu H, Sweet DH and Dukat M: A new chemotype inhibitor for the human organic cation transporter 3 (hOCT3). Bioorg Med Chem Lett. 27:4440–4445. 2017. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

October 2019
Volume 42 Issue 4

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Gu, J., Wang, L., Li, T., Tang, S., Wang, Y., Zhang, W., & Jiang, X. (2019). Role and mechanism of organic cation transporter 3 in oxaliplatin treatment of colon cancer in vitro and in vivo. Oncology Reports, 42, 1355-1364. https://doi.org/10.3892/or.2019.7267
MLA
Gu, J., Wang, L., Li, T., Tang, S., Wang, Y., Zhang, W., Jiang, X."Role and mechanism of organic cation transporter 3 in oxaliplatin treatment of colon cancer in vitro and in vivo". Oncology Reports 42.4 (2019): 1355-1364.
Chicago
Gu, J., Wang, L., Li, T., Tang, S., Wang, Y., Zhang, W., Jiang, X."Role and mechanism of organic cation transporter 3 in oxaliplatin treatment of colon cancer in vitro and in vivo". Oncology Reports 42, no. 4 (2019): 1355-1364. https://doi.org/10.3892/or.2019.7267