Open Access

Transcriptional regulation of FoxM1 by HIF‑1α mediates hypoxia‑induced EMT in prostate cancer

  • Authors:
    • Cong Tang
    • Tianjie Liu
    • Ke Wang
    • Xinyang Wang
    • Shan Xu
    • Dalin He
    • Jin Zeng
  • View Affiliations

  • Published online on: July 25, 2019     https://doi.org/10.3892/or.2019.7248
  • Pages: 1307-1318
  • Copyright: © Tang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Hypoxia is a tumorigenesis‑related microenvironment change which usually occurs in the earliest stage of prostate cancer (PCa) development. Accumulating evidence has demonstrated that hypoxia/hypoxia‑inducing factor (HIF) is involved in the induction of epithelial‑mesenchymal transition (EMT) and increased metastatic potential in PCa. However, the mechanism by which hypoxia/HIF regulates EMT remains unclear. In the present study, we demonstrated the molecular mechanisms of hypoxia‑induced EMT in PCa, focusing on HIF‑1α/Forkhead box M1 (FoxM1) signaling pathway. PCa PC3 and DU145 cell lines were used as the model system in vitro. Our data revealed that hypoxia induced EMT in PCa cells. Bioinformatics analysis identified the possible association between HIF‑1α and FoxM1. Additionally, FoxM1 was significantly associated with PCa development and Gleason scores of PCa. Exposure to hypoxia resulted in the increased expression of HIF‑1α and FoxM1. Genetic knockdown FoxM1 abolished hypoxia‑induced EMT in PCa, while exogenous overexpression of FoxM1 facilitated hypoxia‑induced EMT. Furthermore, the increase of FoxM1 during hypoxia was due to the transcriptional regulation on the FoxM1 promoter by HIF‑1α. We also confirmed the binding site of HIF‑1α on the FoxM1 promoter by different lengths promoter sequences. These findings provide new insights into how EMT is regulated in PCa under hypoxic stress. It is worthwhile to investigate in future that inhibition of FoxM1 as a potential target may be an effective therapeutic strategy against PCa.

References

1 

Schatten H: Brief overview of prostate cancer statistics, grading, diagnosis and treatment strategies. Adv Exp Med Biol. 1095:1–14. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2015. CA Cancer J Clin. 65:5–29. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Holm HV, Dahl AA, Klepp OH and Fossa SD: Modern treatment of metastatic prostate cancer. Tidsskr Nor Laegeforen. 137:803–805. 2017.(In English, Norwegian). View Article : Google Scholar : PubMed/NCBI

4 

Grubb RL III and Kibel AS: Prostate cancer: Screening, diagnosis and management in 2007. Mo Med. 104:408–414. 2007.PubMed/NCBI

5 

Gomez CR, Kosari F, Munz JM, Schreiber CA, Knutson GJ, Ida CM, El Khattouti A, Karnes RJ, Cheville JC, Vasmatzis G and Vuk-Pavlović S: Prognostic value of discs large homolog 7 transcript levels in prostate cancer. PLoS One. 8:e828332013. View Article : Google Scholar : PubMed/NCBI

6 

Semenza GL: Hypoxia-inducible factors in physiology and medicine. Cell. 148:399–408. 2012. View Article : Google Scholar : PubMed/NCBI

7 

Semenza GL: Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 3:721–732. 2003. View Article : Google Scholar : PubMed/NCBI

8 

Deep G and Panigrahi GK: Hypoxia-induced signaling promotes prostate cancer progression: Exosomes role as messenger of hypoxic response in tumor microenvironment. Crit Rev Oncog. 20:419–434. 2015. View Article : Google Scholar : PubMed/NCBI

9 

Du J, Sun B, Zhao X, Gu Q, Dong X, Mo J, Sun T, Wang J, Sun R and Liu Y: Hypoxia promotes vasculogenic mimicry formation by inducing epithelial-mesenchymal transition in ovarian carcinoma. Gynecol Oncol. 133:575–583. 2014. View Article : Google Scholar : PubMed/NCBI

10 

Shaikh D, Zhou Q, Chen T, Ibe JC, Raj JU and Zhou G: cAMP-dependent protein kinase is essential for hypoxia- mediated epithelial-mesenchymal transition, migration, and invasion in lung cancer cells. Cell Signal. 24:2396–2406. 2012. View Article : Google Scholar : PubMed/NCBI

11 

Liu Y, Liu Y, Yan X, Xu Y, Luo F, Ye J, Yan H, Yang X, Huang X, Zhang J and Ji G: HIFs enhance the migratory and neoplastic capacities of hepatocellular carcinoma cells by promoting EMT. Tumour Biol. 35:8103–8114. 2014. View Article : Google Scholar : PubMed/NCBI

12 

Hay ED: Role of cell-matrix contacts in cell migration and epithelial-mesenchymal transformation. Cell Differ Dev. 32:367–375. 1990. View Article : Google Scholar : PubMed/NCBI

13 

Khan MI, Hamid A, Adhami VM, Lall RK and Mukhtar H: Role of epithelial mesenchymal transition in prostate tumorigenesis. Curr Pharm Des. 21:1240–1248. 2015. View Article : Google Scholar : PubMed/NCBI

14 

Cowin P, Rowlands TM and Hatsell SJ: Cadherins and catenins in breast cancer. Curr Opin Cell Biol. 17:499–508. 2005. View Article : Google Scholar : PubMed/NCBI

15 

Tsai JH and Yang J: Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev. 27:2192–2206. 2013. View Article : Google Scholar : PubMed/NCBI

16 

Iwasaki K, Ninomiya R, Shin T, Nomura T, Kajiwara T, Hijiya N, Moriyama M, Mimata H and Hamada F: Chronic hypoxia-induced slug promotes invasive behavior of prostate cancer cells by activating expression of ephrin-B1. Cancer Sci. 109:3159–3170. 2018. View Article : Google Scholar : PubMed/NCBI

17 

Liao GB, Li XZ, Zeng S, Liu C, Yang SM, Yang L, Hu CJ and Bai JY: Regulation of the master regulator FOXM1 in cancer. Cell Commun Signal. 16:572018. View Article : Google Scholar : PubMed/NCBI

18 

Ahmad A, Wang Z, Kong D, Ali S, Li Y, Banerjee S, Ali R and Sarkar FH: FoxM1 down-regulation leads to inhibition of proliferation, migration and invasion of breast cancer cells through the modulation of extra-cellular matrix degrading factors. Breast Cancer Res Treat. 122:337–346. 2010. View Article : Google Scholar : PubMed/NCBI

19 

Yang C, Chen H, Tan G, Gao W, Cheng L, Jiang X, Yu L and Tan Y: FOXM1 promotes the epithelial to mesenchymal transition by stimulating the transcription of Slug in human breast cancer. Cancer Lett. 340:104–112. 2013. View Article : Google Scholar : PubMed/NCBI

20 

Abdeljaoued S, Bettaieb I, Nasri M, Adouni O, Goucha A, El Amine O, Boussen H, Rahal K and Gamoudi A: Overexpression of FOXM1 is a potential prognostic marker in male breast cancer. Oncol Res Treat. 40:167–172. 2017. View Article : Google Scholar : PubMed/NCBI

21 

Chen Y, Yu W, Zhou L, Wu S, Yang Y, Wang J, Tian Y, He D, Xu Y, Huang J, et al: Relationship among diet habit and lower urinary tract symptoms and sexual function in outpatient-based males with LUTS/BPH: A multiregional and cross-sectional study in China. BMJ Open. 6:e0108632016. View Article : Google Scholar : PubMed/NCBI

22 

Kong FF, Qu ZQ, Yuan HH, Wang JY, Zhao M, Guo YH, Shi J, Gong XD, Zhu YL, Liu F, et al: Overexpression of FOXM1 is associated with EMT and is a predictor of poor prognosis in non-small cell lung cancer. Oncol Rep. 31:2660–2668. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Ito T, Kohashi K, Yamada Y, Maekawa A, Kuda M, Furue M and Oda Y: Prognostic significance of forkhead box M1 (FoxM1) expression and antitumour effect of FoxM1 inhibition in melanoma. Histopathology. 69:63–71. 2016. View Article : Google Scholar : PubMed/NCBI

24 

Liu Y, Liu Y, Yuan B, Yin L, Peng Y, Yu X, Zhou W, Gong Z, Liu J, He L and Li X: FOXM1 promotes the progression of prostate cancer by regulating PSA gene transcription. Oncotarget. 8:17027–17037. 2017.PubMed/NCBI

25 

Li L, Wu D, Yu Q, Li L and Wu P: Prognostic value of FOXM1 in solid tumors: A systematic review and meta-analysis. Oncotarget. 8:32298–32308. 2017.PubMed/NCBI

26 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Method. 25:402–408. 2001. View Article : Google Scholar

27 

Robinson MD, McCarthy DJ and Smyth GK: edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 26:139–140. 2010. View Article : Google Scholar : PubMed/NCBI

28 

McCarthy DJ, Chen Y and Smyth GK: Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 40:4288–4297. 2012. View Article : Google Scholar : PubMed/NCBI

29 

Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C and Chanda SK: Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 10:15232019. View Article : Google Scholar : PubMed/NCBI

30 

Kalluri RJ: EMT: When epithelial cells decide to become mesenchymal-like cells. J Clin Invest. 119:1417–1419. 2009. View Article : Google Scholar : PubMed/NCBI

31 

Grunert S, Jechlinger M and Beug H: Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat Rev Mol Cell Biol. 4:657–665. 2003. View Article : Google Scholar : PubMed/NCBI

32 

Yang MH, Wu MZ, Chiou SH, Chen PM, Chang SY, Liu CJ, Teng SC and Wu KJ: Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat Cell Biol. 10:295–305. 2008. View Article : Google Scholar : PubMed/NCBI

33 

Boddy JL, Fox SB, Han C, Campo L, Turley H, Kanga S, Malone PR and Harris AL: The androgen receptor is significantly associated with vascular endothelial growth factor and hypoxia sensing via hypoxia-inducible factors HIF-1a, HIF-2a, and the prolyl hydroxylases in human prostate cancer. Clin Cancer Res. 11:7658–7663. 2005. View Article : Google Scholar : PubMed/NCBI

34 

Mak P, Leav I, Pursell B, Bae D, Yang X, Taglienti CA, Gouvin LM, Sharma VM and Mercurio AM: ERbeta impedes prostate cancer EMT by destabilizing HIF-1alpha and inhibiting VEGF-mediated snail nuclear localization: Implications for Gleason grading. Cancer Cell. 17:319–332. 2010. View Article : Google Scholar : PubMed/NCBI

35 

Luo Y, He DL, Ning L, Shen SL, Li L, Li X, Zhau HE and Chung LW: Over-expression of hypoxia-inducible factor-1alpha increases the invasive potency of LNCaP cells in vitro. BJU Int. 98:1315–1319. 2006. View Article : Google Scholar : PubMed/NCBI

36 

Bizzarro V, Belvedere R, Migliaro V, Romano E, Parente L and Petrella A: Hypoxia regulates ANXA1 expression to support prostate cancer cell invasion and aggressiveness. Cell Adh Migr. 11:247–260. 2017. View Article : Google Scholar : PubMed/NCBI

37 

Wu JB, Shao C, Li X, Li Q, Hu P, Shi C, Li Y, Chen YT, Yin F, Liao CP, et al: Monoamine oxidase A mediates prostate tumorigenesis and cancer metastasis. J Clin Invest. 124:2891–2908. 2014. View Article : Google Scholar : PubMed/NCBI

38 

Cheng WS, Tao H, Hu EP, Liu S, Cai HR, Tao XL, Zhang L, Mao JJ and Yan DL: Both genes and lncRNAs can be used as biomarkers of prostate cancer by using high throughput sequencing data. Eur Rev Med Pharmacol Sci. 18:3504–3510. 2014.PubMed/NCBI

39 

Han Y, Jin X, Li H, Wang K, Gao J, Song L and Lv Y: Microarray analysis of copy-number variations and gene expression profiles in prostate cancer. Medicine (Baltimore). 96:e72642017. View Article : Google Scholar : PubMed/NCBI

40 

Tan J, Jin X and Wang K: Integrated bioinformatics analysis of potential biomarkers for prostate cancer. 25:455–460. 2019.PubMed/NCBI

41 

Soni S and Padwad YS: HIF-1 in cancer therapy: Two decade long story of a transcription factor. 56:503–515. 2017.PubMed/NCBI

42 

Semenza GL: Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol. 15:551–578. 1999. View Article : Google Scholar : PubMed/NCBI

43 

Korver W, Roose J, Heinen K, Weghuis DO, de Bruijn D, van Kessel AG and Clevers H: The human TRIDENT/HFH- 11/FKHL16 gene: Structure, localization, and promoter characterization. Genomics. 46:435–442. 1997. View Article : Google Scholar : PubMed/NCBI

44 

Laoukili J, Stahl M and Medema RH: FoxM1: At the crossroads of ageing and cancer. Biochim Biophys Acta. 1775:92–102. 2007.PubMed/NCBI

45 

Nandi D, Cheema PS, Jaiswal N and Nag A: FoxM1: Repurposing an oncogene as a biomarker. Semin Cancer Biol. 52:74–84. 2018. View Article : Google Scholar : PubMed/NCBI

46 

Yang DK, Son CH, Lee SK, Choi PJ, Lee KE and Roh MS: Forkhead box M1 expression in pulmonary squamous cell carcinoma: Correlation with clinicopathologic features and its prognostic significance. Hum Pathol. 40:464–470. 2009. View Article : Google Scholar : PubMed/NCBI

47 

Sun HC, Li M, Lu JL, Yan DW, Zhou CZ, Fan JW, Qin XB, Tang HM and Peng ZH: Overexpression of Forkhead box M1 protein associates with aggressive tumor features and poor prognosis of hepatocellular carcinoma. Oncol Rep. 25:1533–1539. 2011.PubMed/NCBI

48 

Huynh KM, Soh JW, Dash R, Sarkar D, Fisher PB and Kang D: FOXM1 expression mediates growth suppression during terminal differentiation of HO-1 human metastatic melanoma cells. J Cell Physiol. 226:194–204. 2011. View Article : Google Scholar : PubMed/NCBI

49 

Xia L, Mo P, Huang W, Zhang L, Wang Y, Zhu H, Tian D, Liu J, Chen Z, Zhang Y, et al: The TNF-α/ROS/HIF-1-induced upregulation of FoxMI expression promotes HCC proliferation and resistance to apoptosis. Carcinogenesis. 33:2250–2259. 2012. View Article : Google Scholar : PubMed/NCBI

50 

Wang Y, Wen L, Zhao SH, Ai ZH, Guo JZ and Liu WC: FoxM1 expression is significantly associated with cisplatin-based chemotherapy resistance and poor prognosis in advanced non-small cell lung cancer patients. Lung Cancer. 79:173–179. 2013. View Article : Google Scholar : PubMed/NCBI

51 

Cai Y, Balli D, Ustiyan V, Fulford L, Hiller A, Misetic V, Zhang Y, Paluch AM, Waltz SE, Kasper S and Kalin TV: Foxm1 expression in prostate epithelial cells is essential for prostate carcinogenesis. J Biol Chem. 288:22527–22541. 2013. View Article : Google Scholar : PubMed/NCBI

52 

Ketola K, Munuganti RSN, Davies A, Nip KM, Bishop JL and Zoubeidi A: Targeting prostate cancer subtype 1 by forkhead box M1 pathway inhibition. Clin Cancer Res. 23:6923–6933. 2017. View Article : Google Scholar : PubMed/NCBI

53 

Kim MY, Jung AR, Kim GE, Yang J, Ha US, Hong SH, Choi YJ, Moon MH, Kim SW, Lee JY and Park YH: High FOXM1 expression is a prognostic marker for poor clinical outcomes in prostate cancer. J Cancer. 10:749–756. 2019. View Article : Google Scholar : PubMed/NCBI

54 

Zavadil J and Bottinger EP: TGF-beta and epithelial-to-mesenchymal transitions. Oncogene. 24:5764–5774. 2005. View Article : Google Scholar : PubMed/NCBI

55 

Sahlgren C, Gustafsson MV, Jin S, Poellinger L and Lendahl U: Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proc Natl Acad Sci USA. 105:6392–6397. 2008. View Article : Google Scholar : PubMed/NCBI

56 

Giannoni E, Bianchini F, Calorini L and Chiarugi P: Cancer associated fibroblasts exploit reactive oxygen species through a proinflammatory signature leading to epithelial mesenchymal transition and stemness. Antioxid Redox Signal. 14:2361–2371. 2011. View Article : Google Scholar : PubMed/NCBI

57 

Chuang MJ, Sun KH, Tang SJ, Deng MW, Wu YH, Sung JS, Cha TL and Sun GH: Tumor-derived tumor necrosis factor-alpha promotes progression and epithelial-mesenchymal transition in renal cell carcinoma cells. Cancer Sci. 99:905–913. 2008. View Article : Google Scholar : PubMed/NCBI

58 

Sullivan NJ, Sasser AK, Axel AE, Vesuna F, Raman V, Ramirez N, Oberyszyn TM and Hall BM: Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human breast cancer cells. Oncogene. 28:2940–2947. 2009. View Article : Google Scholar : PubMed/NCBI

59 

St John MA, Dohadwala M, Luo J, Wang G, Lee G, Shih H, Heinrich E, Krysan K, Walser T, Hazra S, Zhu L, et al: Proinflammatory mediators upregulate snail in head and neck squamous cell carcinoma. Clin Cancer Res. 15:6018–6027. 2009. View Article : Google Scholar : PubMed/NCBI

60 

Jiang J, Tang YL and Liang XH: EMT: A new vision of hypoxia promoting cancer progression. Cancer Biol Ther. 11:714–723. 2011. View Article : Google Scholar : PubMed/NCBI

61 

Park SY, Kim YJ, Gao AC, Mohler JL, Onate SA, Hidalgo AA, Ip C, Park EM, Yoon SY and Park YM: Hypoxia increases androgen receptor activity in prostate cancer cells. Cancer Res. 66:5121–5129. 2006. View Article : Google Scholar : PubMed/NCBI

62 

Mabjeesh NJ, Willard MT, Frederickson CE, Zhong H and Simons JW: Androgens stimulate hypoxia-inducible factor 1 activation via autocrine loop of tyrosine kinase receptor/phosphatidylinositol 3′-kinase/protein kinase B in prostate cancer cells. Clin Cancer Res. 9:2416–2425. 2003.PubMed/NCBI

63 

Geng H, Xue C, Mendonca J, Sun XX, Liu Q, Reardon PN, Chen Y, Qian K, Hua V, Chen A, et al: Interplay between hypoxia and androgen controls a metabolic switch conferring resistance to androgen/AR-targeted therapy. Nat Commun. 9:49722018. View Article : Google Scholar : PubMed/NCBI

64 

Amarilio R, Viukov SV, Sharir A, Eshkar-Oren I, Johnson RS and Zelzer E: HIF1alpha regulation of Sox9 is necessary to maintain differentiation of hypoxic prechondrogenic cells during early skeletogenesis. Development. 134:3917–3928. 2007. View Article : Google Scholar : PubMed/NCBI

65 

Bae KM, Dai Y, Vieweg J and Siemann DW: Hypoxia regulates SOX2 expression to promote prostate cancer cell invasion and sphere formation. Am J Cancer Res. 6:1078–1088. 2016.PubMed/NCBI

66 

Xia LM, Huang WJ, Wang B, Liu M, Zhang Q, Yan W, Zhu Q, Luo M, Zhou ZZ and Tian DA: Transcriptional up-regulation of FoxM1 in response to hypoxia is mediated by HIF-1. J Cell Biochem. 106:247–256. 2009. View Article : Google Scholar : PubMed/NCBI

67 

Wang GL and Semenza GL: Purification and characterization of hypoxia-inducible factor 1. J Biol Chem. 270:1230–1237. 1995. View Article : Google Scholar : PubMed/NCBI

68 

Wang GL, Jiang BH, Rue EA and Semenza GL: Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA. 92:5510–5514. 1995. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

October 2019
Volume 42 Issue 4

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Tang, C., Liu, T., Wang, K., Wang, X., Xu, S., He, D., & Zeng, J. (2019). Transcriptional regulation of FoxM1 by HIF‑1α mediates hypoxia‑induced EMT in prostate cancer. Oncology Reports, 42, 1307-1318. https://doi.org/10.3892/or.2019.7248
MLA
Tang, C., Liu, T., Wang, K., Wang, X., Xu, S., He, D., Zeng, J."Transcriptional regulation of FoxM1 by HIF‑1α mediates hypoxia‑induced EMT in prostate cancer". Oncology Reports 42.4 (2019): 1307-1318.
Chicago
Tang, C., Liu, T., Wang, K., Wang, X., Xu, S., He, D., Zeng, J."Transcriptional regulation of FoxM1 by HIF‑1α mediates hypoxia‑induced EMT in prostate cancer". Oncology Reports 42, no. 4 (2019): 1307-1318. https://doi.org/10.3892/or.2019.7248