Open Access

β2‑adrenergic receptor signaling promotes neuroblastoma cell proliferation by activating autophagy

  • Authors:
    • Jing Deng
    • Ping Jiang
    • Tianyou Yang
    • Mao Huang
    • Jinye Xie
    • Chuanghua Luo
    • Weiwei Qi
    • Ti Zhou
    • Zhonghan Yang
    • Yan Zou
    • Guoquan Gao
    • Xia Yang
  • View Affiliations

  • Published online on: August 6, 2019     https://doi.org/10.3892/or.2019.7266
  • Pages: 1295-1306
  • Copyright: © Deng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Accumulating evidence suggests the pivotal role of the sympathetic nervous system in the initiation and aggressive progression of tumors, whereas the role of β‑adrenergic receptor (β‑AR) signaling in neuroblastoma (NB) and the underlying regulatory mechanisms have not yet been well elucidated. In the present study, it was demonstrated that the expression of both β1‑AR and β2‑AR was significantly increased in clinical samples of NB compared with those of ganglioneuroma (GN) and ganglioneuroblastoma (GNB), and that β2‑AR is the key β‑adrenergic receptor responsible for NB cell growth. Further investigation showed that the expression levels of the autophagy markers LC3‑Ⅱ, beclin‑1 and unc‑51‑like autophagy kinase 1 (ULK1) were also elevated in NB, compared to the cases of GN and GNB. Moreover, β2‑AR expression was found to be positively associated with autophagy markers in the clinical NB specimens. Cellular functional assays demonstrated that β2‑AR activation promoted NB cell growth and activated the autophagy pathway. Pharmacological inhibition of autophagy with 3‑methyladenine abolished β2‑AR‑induced NB cell growth. Mechanistically, β2‑AR signaling triggers autophagy through CREB‑mediated ULK1 upregulation. In conclusion, the present study uncovered a novel regulatory mechanism of β2‑AR‑activated autophagy in NB cell growth and provides a novel potential therapeutic approach for treating NB by targeting autophagy and the β2‑AR pathway.

References

1 

Brodeur GM: Neuroblastoma: Biological insights into a clinical enigma. Nat Rev Cancer. 3:203–216. 2003. View Article : Google Scholar : PubMed/NCBI

2 

Johnsen JI, Dyberg C, Fransson S and Wickström M: Molecular mechanisms and therapeutic targets in neuroblastoma. Pharmacol Res. 131:164–176. 2018. View Article : Google Scholar : PubMed/NCBI

3 

Johnsen JI, Kogner P, Albihn A and Henriksson MA: Embryonal neural tumours and cell death. Apoptosis. 14:424–438. 2009. View Article : Google Scholar : PubMed/NCBI

4 

Ratner N, Brodeur GM, Dale RC and Schor NF: The ‘neuro’ of neuroblastoma: Neuroblastoma as a neurodevelopmental disorder. Ann Neurol. 80:13–23. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Davidoff AM: Neuroblastoma. Semin Pediatr Surg. 21:2–14. 2012. View Article : Google Scholar : PubMed/NCBI

6 

Matthay KK, Maris JM, Schleiermacher G, Nakagawara A, Mackall CL, Diller L and Weiss WA: Neuroblastoma. Nat Rev Dis Primers. 2:160782016. View Article : Google Scholar : PubMed/NCBI

7 

Chen AM, Trout AT and Towbin AJ: A review of neuroblastoma image-defined risk factors on magnetic resonance imaging. Pediatr Radiol. 48:1337–1347. 2018. View Article : Google Scholar : PubMed/NCBI

8 

Cohn SL, Pearson AD, London WB, Monclair T, Ambros PF, Brodeur GM, Faldum A, Hero B, Iehara T, Machin D, et al: The international neuroblastoma risk group (INRG) classification system: An INRG task force report. J Clin Oncol. 27:289–297. 2009. View Article : Google Scholar : PubMed/NCBI

9 

Luksch R, Castellani MR, Collini P, De Bernardi B, Conte M, Gambini C, Gandola L, Garaventa A, Biasoni D, Podda M, et al: Neuroblastoma (peripheral neuroblastic tumours). Crit Rev Oncol Hematol. 107:163–181. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Gonzalez Malagon SG and Liu KJ: ALK and GSK3: Shared features of neuroblastoma and neural crest cells. J Exp Neurosci. 12:11790695187924992018. View Article : Google Scholar : PubMed/NCBI

11 

Westermark UK, Wilhelm M, Frenzel A and Henriksson MA: The MYCN oncogene and differentiation in neuroblastoma. Semin Cancer Biol. 21:256–266. 2011. View Article : Google Scholar : PubMed/NCBI

12 

Bell E, Chen L, Liu T, Marshall GM, Lunec J and Tweddle DA: MYCN oncoprotein targets and their therapeutic potential. Cancer Lett. 293:144–157. 2010. View Article : Google Scholar : PubMed/NCBI

13 

Cruickshank JM: The role of beta-blockers in the treatment of hypertension. Adv Exp Med Biol. 956:149–166. 2017. View Article : Google Scholar : PubMed/NCBI

14 

Tank AW and Lee Wong D: Peripheral and central effects of circulating catecholamines. Compr Physiol. 5:1–15. 2015.PubMed/NCBI

15 

Lukewich MK, Rogers RC and Lomax AE: Divergent neuroendocrine responses to localized and systemic inflammation. Semin Immunol. 26:402–408. 2014. View Article : Google Scholar : PubMed/NCBI

16 

Padro CJ and Sanders VM: Neuroendocrine regulation of inflammation. Semin Immunol. 26:357–368. 2014. View Article : Google Scholar : PubMed/NCBI

17 

Shakola F, Suri P and Ruggiu M: Splicing regulation of pro-inflammatory cytokines and chemokines: At the interface of the neuroendocrine and immune systems. Biomolecules. 5:2073–2100. 2015. View Article : Google Scholar : PubMed/NCBI

18 

Lan H, Hoos LM, Liu L, Tetzloff G, Hu W, Abbondanzo SJ, Vassileva G, Gustafson EL, Hedrick JA and Davis HR: Lack of FFAR1/GPR40 does not protect mice from high-fat diet-induced metabolic disease. Diabetes. 57:2999–3006. 2008. View Article : Google Scholar : PubMed/NCBI

19 

Kim-Fuchs C, Le CP, Pimentel MA, Shackleford D, Ferrari D, Angst E, Hollande F and Sloan EK: Chronic stress accelerates pancreatic cancer growth and invasion: A critical role for beta-adrenergic signaling in the pancreatic microenvironment. Brain Behav Immun. 40:40–47. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Payne JK: State of the science: Stress, inflammation, and cancer. Oncol Nurs Forum. 41:533–540. 2014. View Article : Google Scholar : PubMed/NCBI

21 

Dal Monte M, Casini G, Filippi L, Nicchia GP, Svelto M and Bagnoli P: Functional involvement of beta3-adrenergic receptors in melanoma growth and vascularization. J Mol Med (Berl). 91:1407–1419. 2013. View Article : Google Scholar : PubMed/NCBI

22 

Chen H, Liu D, Yang Z, Sun L, Deng Q, Yang S, Qian L, Guo L, Yu M, Hu M, et al: Adrenergic signaling promotes angiogenesis through endothelial cell-tumor cell crosstalk. Endocr Relat Cancer. 21:783–795. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Chen D, Xing W, Hong J, Wang M, Huang Y, Zhu C, Yuan Y and Zeng W: The beta2-adrenergic receptor is a potential prognostic biomarker for human hepatocellular carcinoma after curative resection. Ann Surg Oncol. 19:3556–3565. 2012. View Article : Google Scholar : PubMed/NCBI

24 

Wu FQ, Fang T, Yu LX, Lv GS, Lv HW, Liang D, Li T, Wang CZ, Tan YX, Ding J, et al: ADRB2 signaling promotes HCC progression and sorafenib resistance by inhibiting autophagic degradation of HIF1α. J Hepatol. 65:314–324. 2016. View Article : Google Scholar : PubMed/NCBI

25 

Magnon C, Hall SJ, Lin J, Xue X, Gerber L, Freedland SJ and Frenette PS: Autonomic nerve development contributes to prostate cancer progression. Science. 341:12363612013. View Article : Google Scholar : PubMed/NCBI

26 

Barron TI, Connolly RM, Sharp L, Bennett K and Visvanathan K: Beta blockers and breast cancer mortality: A population-based study. J Clin Oncol. 29:2635–2644. 2011. View Article : Google Scholar : PubMed/NCBI

27 

Grytli HH, Fagerland MW, Fossa SD and Tasken KA: Association between use of beta-blockers and prostate cancer-specific survival: A cohort study of 3561 prostate cancer patients with high-risk or metastatic disease. Eur Urol. 65:635–641. 2014. View Article : Google Scholar : PubMed/NCBI

28 

Efeyan A, Comb WC and Sabatini DM: Nutrient-sensing mechanisms and pathways. Nature. 517:302–310. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Jiang X, Overholtzer M and Thompson CB: Autophagy in cellular metabolism and cancer. J Clin Invest. 125:47–54. 2015. View Article : Google Scholar : PubMed/NCBI

30 

Wirawan E, Vanden Berghe T, Lippens S, Agostinis P and Vandenabeele P: Autophagy: For better or for worse. Cell Res. 22:43–61. 2012. View Article : Google Scholar : PubMed/NCBI

31 

Scrivo A, Bourdenx M, Pampliega O and Cuervo AM: Selective autophagy as a potential therapeutic target for neurodegenerative disorders. Lancet Neurol. 17:802–815. 2018. View Article : Google Scholar : PubMed/NCBI

32 

Kim KH and Lee MS: Autophagy - a key player in cellular and body metabolism. Nat Rev Endocrinol. 10:322–337. 2014. View Article : Google Scholar : PubMed/NCBI

33 

White E: The role for autophagy in cancer. J Clin Invest. 125:42–46. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Menzies FM, Fleming A, Caricasole A, Bento CF, Andrews SP, Ashkenazi A, Fullgrabe J, Jackson A, Jimenez Sanchez M, Karabiyik C, et al: Autophagy and neurodegeneration: Pathogenic mechanisms and therapeutic opportunities. Neuron. 93:1015–1034. 2017. View Article : Google Scholar : PubMed/NCBI

35 

Mizushima N: A(beta) generation in autophagic vacuoles. J Cell Biol. 171:15–17. 2005. View Article : Google Scholar : PubMed/NCBI

36 

Guo JY, Karsli-Uzunbas G, Mathew R, Aisner SC, Kamphorst JJ, Strohecker AM, Chen G, Price S, Lu W, Teng X, et al: Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev. 27:1447–1461. 2013. View Article : Google Scholar : PubMed/NCBI

37 

Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY, Bray K, Reddy A, Bhanot G, Gelinas C, et al: Autophagy suppresses tumorigenesis through elimination of p62. Cell. 137:1062–1075. 2009. View Article : Google Scholar : PubMed/NCBI

38 

Dower CM, Bhat N, Gebru MT, Chen L, Wills CA, Miller BA and Wang HG: Targeted inhibition of ULK1 promotes apoptosis and suppresses tumor growth and metastasis in neuroblastoma. Mol Cancer Ther. 17:2365–2376. 2018. View Article : Google Scholar : PubMed/NCBI

39 

Russell RC, Tian Y, Yuan H, Park HW, Chang YY, Kim J, Kim H, Neufeld TP, Dillin A and Guan KL: ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat Cell Biol. 15:741–750. 2013. View Article : Google Scholar : PubMed/NCBI

40 

Seok S, Fu T, Choi SE, Li Y, Zhu R, Kumar S, Sun X, Yoon G, Kang Y, Zhong W, et al: Transcriptional regulation of autophagy by an FXR-CREB axis. Nature. 516:108–111. 2014. View Article : Google Scholar : PubMed/NCBI

41 

Mierke CT: The fundamental role of mechanical properties in the progression of cancer disease and inflammation. Rep Prog Phy. 77:0766022014. View Article : Google Scholar

42 

Creed SJ, Le CP, Hassan M, Pon CK, Albold S, Chan KT, Berginski ME, Huang Z, Bear JE, Lane JR, et al: β2-adrenoceptor signaling regulates invadopodia formation to enhance tumor cell invasion. Breast Cancer Res. 17:1452015. View Article : Google Scholar : PubMed/NCBI

43 

Mowers EE, Sharifi MN and Macleod KF: Autophagy in cancer metastasis. Oncogene. 36:1619–1630. 2017. View Article : Google Scholar : PubMed/NCBI

44 

Yang A, Herter-Sprie G, Zhang H, Lin EY, Biancur D, Wang X, Deng J, Hai J, Yang S, Wong KK, et al: Autophagy sustains pancreatic cancer growth through both cell-autonomous and nonautonomous mechanisms. Cancer Discov. 8:276–287. 2018. View Article : Google Scholar : PubMed/NCBI

45 

Cai J, Li R, Xu X, Zhang L, Lian R, Fang L, Huang Y, Feng X, Liu X, Li X, et al: CK1α suppresses lung tumour growth by stabilizing PTEN and inducing autophagy. Nat cell Biol. 20:465–478. 2018. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

October 2019
Volume 42 Issue 4

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Deng, J., Jiang, P., Yang, T., Huang, M., Xie, J., Luo, C. ... Yang, X. (2019). β2‑adrenergic receptor signaling promotes neuroblastoma cell proliferation by activating autophagy. Oncology Reports, 42, 1295-1306. https://doi.org/10.3892/or.2019.7266
MLA
Deng, J., Jiang, P., Yang, T., Huang, M., Xie, J., Luo, C., Qi, W., Zhou, T., Yang, Z., Zou, Y., Gao, G., Yang, X."β2‑adrenergic receptor signaling promotes neuroblastoma cell proliferation by activating autophagy". Oncology Reports 42.4 (2019): 1295-1306.
Chicago
Deng, J., Jiang, P., Yang, T., Huang, M., Xie, J., Luo, C., Qi, W., Zhou, T., Yang, Z., Zou, Y., Gao, G., Yang, X."β2‑adrenergic receptor signaling promotes neuroblastoma cell proliferation by activating autophagy". Oncology Reports 42, no. 4 (2019): 1295-1306. https://doi.org/10.3892/or.2019.7266