The impact of the bone marrow microenvironment on multiple myeloma (Review)

  • Authors:
    • Jianhao Hou
    • Rongfang Wei
    • Jinjun Qian
    • Ronggen Wang
    • Zhimin Fan
    • Chunyan Gu
    • Ye Yang
  • View Affiliations

  • Published online on: August 5, 2019     https://doi.org/10.3892/or.2019.7261
  • Pages: 1272-1282
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Multiple myeloma (MM) is characterized by the accumulation of monoclonal plasma cells in the bone marrow (BM). The interaction between the BM microenvironment and MM plasma cells can influence cell proliferation, drug resistance and prognosis of the disease. The BM microenvironment (BMME) consists of a cellular and non‑cellular compartment. The cellular compartment includes stromal cells, endothelial cells, osteoclasts and osteoblasts, and the non‑cellular compartment includes the extracellular matrix (ECM) and the liquid milieu, which contains cytokines, growth factors and chemokines. The complex interaction between the BM microenvironment and MM plasma cells influences disease development and prognosis. The present review focuses on the interaction between malignant plasma cells and the BM microenvironment during MM progression. An improved understanding of the interaction between MM plasma cells and their microenvironment will enable the development of novel therapeutic tools that can be used in the treatment of MM, a currently incurable blood cancer.

References

1 

Rajkumar SV: Myeloma today: Disease definitions and treatment advances. Am J Hematol. 91:90–100. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Landgren O, Kyle RA, Pfeiffer RM, Katzmann JA, Caporaso NE, Hayes RB, Dispenzieri A, Kumar S, Clark RJ, Baris D, et al: Monoclonal gammopathy of undetermined significance (MGUS) consistently precedes multiple myeloma: A prospective study. Blood. 113:5412–5417. 2009. View Article : Google Scholar : PubMed/NCBI

4 

Kyle RA, Durie BG, Rajkumar SV, Landgren O, Blade J, Merlini G, Kröger N, Einsele H, Vesole DH, Dimopoulos M, et al: Monoclonal gammopathy of undetermined significance (MGUS) and smoldering (asymptomatic) multiple myeloma: IMWG consensus perspectives risk factors for progression and guidelines for monitoring and management. Leukemia. 24:1121–1127. 2010. View Article : Google Scholar : PubMed/NCBI

5 

Kunisaki Y, Bruns I, Scheiermann C, Ahmed J, Pinho S, Zhang D, Mizoguchi T, Wei Q, Lucas D, Ito K, et al: Arteriolar niches maintain haematopoietic stem cell quiescence. Nature. 502:637–643. 2013. View Article : Google Scholar : PubMed/NCBI

6 

Manier S, Sacco A, Leleu X, Ghobrial IM and Roccaro AM: Bone marrow microenvironment in multiple myeloma progression. J Biomed Biotechnol. 2012:1574962012. View Article : Google Scholar : PubMed/NCBI

7 

Crisan M and Dzierzak E: The many faces of hematopoietic stem cell heterogeneity. Development. 143:4571–4581. 2016. View Article : Google Scholar : PubMed/NCBI

8 

Pang WW, Schrier SL and Weissman IL: Age-associated changes in human hematopoietic stem cells. Semin Hematol. 54:39–42. 2017. View Article : Google Scholar : PubMed/NCBI

9 

Shiozawa Y, Pedersen EA, Havens AM, Jung Y, Mishra A, Joseph J, Kim JK, Patel LR, Ying C, Ziegler AM, et al: Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Invest. 121:1298–1312. 2011. View Article : Google Scholar : PubMed/NCBI

10 

Corcoran KE, Patel N and Rameshwar P: Stromal derived growth factor-1alpha: Another mediator in neural-emerging immune system through Tac1 expression in bone marrow stromal cells. J Immunol. 178:2075–2082. 2007. View Article : Google Scholar : PubMed/NCBI

11 

Shiozawa Y, Pedersen EA, Patel LR, Ziegler AM, Havens AM, Jung Y, Wang J, Zalucha S, Loberg RD, Pienta KJ and Taichman RS: GAS6/AXL axis regulates prostate cancer invasion, proliferation, and survival in the bone marrow niche. Neoplasia. 12:116–127. 2010. View Article : Google Scholar : PubMed/NCBI

12 

Chinni SR, Sivalogan S, Dong Z, Filho JC, Deng X, Bonfil RD and Cher ML: CXCL12/CXCR4 signaling activates Akt-1 and MMP-9 expression in prostate cancer cells: The role of bone microenvironment-associated CXCL12. Prostate. 66:32–48. 2006. View Article : Google Scholar : PubMed/NCBI

13 

Kawano Y, Moschetta M, Manier S, Glavey S, Görgün GT, Roccaro AM, Anderson KC and Ghobrial IM: Targeting the bone marrow microenvironment in multiple myeloma. Immunol Rev. 263:160–172. 2015. View Article : Google Scholar : PubMed/NCBI

14 

Ribatti D, Nico B and Vacca A: Importance of the bone marrow microenvironment in inducing the angiogenic response in multiple myeloma. Oncogene. 25:4257–4266. 2006. View Article : Google Scholar : PubMed/NCBI

15 

Ghobrial IM: Myeloma as a model for the process of metastasis: Implications for therapy. Blood. 120:20–30. 2012. View Article : Google Scholar : PubMed/NCBI

16 

Anderson KC and Carrasco RD: Pathogenesis of myeloma. Annu Rev Pathol. 6:249–274. 2011. View Article : Google Scholar : PubMed/NCBI

17 

Abdi J, Chen G and Chang H: Drug resistance in multiple myeloma: Latest findings and new concepts on molecular mechanisms. Oncotarget. 4:2186–2207. 2013. View Article : Google Scholar : PubMed/NCBI

18 

Bianchi G and Munshi NC: Pathogenesis beyond the cancer clone(s) in multiple myeloma. Blood. 125:3049–3058. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Ribatti D, Moschetta M and Vacca A: Microenvironment and multiple myeloma spread. Thromb Res. 133 (Suppl 2):S102–S106. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Lemaire M, Deleu S, De Bruyne E, Van Valckenborgh E, Menu E and Vanderkerken K: The microenvironment and molecular biology of the multiple myeloma tumor. Adv Cancer Res. 110:19–42. 2011. View Article : Google Scholar : PubMed/NCBI

21 

Wu Q, Zhou X, Huang D, Ji Y and Kang F: IL-6 enhances osteocyte-mediated osteoclastogenesis by promoting JAK2 and RANKL activity in vitro. Cell Physiol Biochem. 41:1360–1369. 2017. View Article : Google Scholar : PubMed/NCBI

22 

Hideshima T, Chauhan D, Schlossman R, Richardson P and Anderson KC: The role of tumor necrosis factor alpha in the pathophysiology of human multiple myeloma: Therapeutic applications. Oncogene. 20:4519–4527. 2001. View Article : Google Scholar : PubMed/NCBI

23 

Wang J, Hendrix A, Hernot S, Lemaire M, De Bruyne E, Van Valckenborgh E, Lahoutte T, De Wever O, Vanderkerken K and Menu E: Bone marrow stromal cell-derived exosomes as communicators in drug resistance in multiple myeloma cells. Blood. 124:555–566. 2014. View Article : Google Scholar : PubMed/NCBI

24 

Roccaro AM, Sacco A, Maiso P, Azab AK, Tai YT, Reagan M, Azab F, Flores LM, Campigotto F, Weller E, et al: BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression. J Clin Invest. 123:1542–1555. 2013. View Article : Google Scholar : PubMed/NCBI

25 

Wang J, De Veirman K, Faict S, Frassanito MA, Ribatti D, Vacca A and Menu E: Multiple myeloma exosomes establish a favourable bone marrow microenvironment with enhanced angiogenesis and immunosuppression. J Pathol. 239:162–173. 2016. View Article : Google Scholar : PubMed/NCBI

26 

Kumar S, Gertz MA, Dispenzieri A, Lacy MQ, Wellik LA, Fonseca R, Lust JA, Witzig TE, Kyle RA, Greipp PR and Rajkumar SV: Prognostic value of bone marrow angiogenesis in patients with multiple myeloma undergoing high-dose therapy. Bone Marrow Transplant. 34:235–239. 2004. View Article : Google Scholar : PubMed/NCBI

27 

Moschetta M, Mishima Y, Kawano Y, Manier S, Paiva B, Palomera L, Aljawai Y, Calcinotto A, Unitt C, Sahin I, et al: Targeting vasculogenesis to prevent progression in multiple myeloma. Leukemia. 30:1103–1115. 2016. View Article : Google Scholar : PubMed/NCBI

28 

Vacca A and Ribatti D: Angiogenesis and vasculogenesis in multiple myeloma: Role of inflammatory cells. Recent Results Cancer Res. 183:87–95. 2011. View Article : Google Scholar : PubMed/NCBI

29 

Andreuzzi E, Colladel R, Pellicani R, Tarticchio G, Cannizzaro R, Spessotto P, Bussolati B, Brossa A, De Paoli P, Canzonieri V, et al: The angiostatic molecule Multimerin 2 is processed by MMP-9 to allow sprouting angiogenesis. Matrix Biol. 64:40–53. 2017. View Article : Google Scholar : PubMed/NCBI

30 

Ria R, Reale A, De Luisi A, Ferrucci A, Moschetta M and Vacca A: Bone marrow angiogenesis and progression in multiple myeloma. Am J Blood Res. 1:76–89. 2011.PubMed/NCBI

31 

Vacca A, Ria R, Ribatti D, Semeraro F, Djonov V, Di Raimondo F and Dammacco F: A paracrine loop in the vascular endothelial growth factor pathway triggers tumor angiogenesis and growth in multiple myeloma. Haematologica. 88:176–185. 2003.PubMed/NCBI

32 

Menu E, Kooijman R, Van Valckenborgh E, Asosingh K, Bakkus M, Van Camp B and Vanderkerken K: Specific roles for the PI3K and the MEK-ERK pathway in IGF-1-stimulated chemotaxis, VEGF secretion and proliferation of multiple myeloma cells: Study in the 5T33MM model. Br J Cancer. 90:1076–1083. 2004. View Article : Google Scholar : PubMed/NCBI

33 

Tanaka Y, Abe M, Hiasa M, Oda A, Amou H, Nakano A, Takeuchi K, Kitazoe K, Kido S, Inoue D, et al: Myeloma cell-osteoclast interaction enhances angiogenesis together with bone resorption: A role for vascular endothelial cell growth factor and osteopontin. Clin Cancer Res. 13:816–823. 2007. View Article : Google Scholar : PubMed/NCBI

34 

Cackowski FC, Anderson JL, Patrene KD, Choksi RJ, Shapiro SD, Windle JJ, Blair HC and Roodman GD: Osteoclasts are important for bone angiogenesis. Blood. 115:140–149. 2010. View Article : Google Scholar : PubMed/NCBI

35 

Hideshima T, Mitsiades C, Tonon G, Richardson PG and Anderson KC: Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat Rev Cancer. 7:585–598. 2007. View Article : Google Scholar : PubMed/NCBI

36 

Roccaro AM, Hideshima T, Raje N, Kumar S, Ishitsuka K, Yasui H, Shiraishi N, Ribatti D, Nico B, Vacca A, et al: Bortezomib mediates antiangiogenesis in multiple myeloma via direct and indirect effects on endothelial cells. Cancer Res. 66:184–191. 2006. View Article : Google Scholar : PubMed/NCBI

37 

Bonewald LF: The amazing osteocyte. J Bone Miner Res. 26:229–238. 2011. View Article : Google Scholar : PubMed/NCBI

38 

Bataille R, Chappard D, Marcelli C, Dessauw P, Sany J, Baldet P and Alexandre C: Mechanisms of bone destruction in multiple myeloma: The importance of an unbalanced process in determining the severity of lytic bone disease. J Clin Oncol. 7:1909–1914. 1989. View Article : Google Scholar : PubMed/NCBI

39 

Delgado-Calle J, Bellido T and Roodman GD: Role of osteocytes in multiple myeloma bone disease. Curr Opin Support Palliat Care. 8:407–413. 2014. View Article : Google Scholar : PubMed/NCBI

40 

Kristensen IB, Christensen JH, Lyng MB, Møller MB, Pedersen L, Rasmussen LM, Ditzel HJ and Abildgaard N: Expression of osteoblast and osteoclast regulatory genes in the bone marrow microenvironment in multiple myeloma: Only up-regulation of Wnt inhibitors SFRP3 and DKK1 is associated with lytic bone disease. Leuk Lymphoma. 55:911–919. 2014. View Article : Google Scholar : PubMed/NCBI

41 

Walker RE, Lawson MA, Buckle CH, Snowden JA and Chantry AD: Myeloma bone disease: Pathogenesis, current treatments and future targets. Br Med Bull. 111:117–138. 2014. View Article : Google Scholar : PubMed/NCBI

42 

Giuliani N, Ferretti M, Bolzoni M, Storti P, Lazzaretti M, Dalla Palma B, Bonomini S, Martella E, Agnelli L, Neri A, et al: Increased osteocyte death in multiple myeloma patients: Role in myeloma-induced osteoclast formation. Leukemia. 26:1391–1401. 2012. View Article : Google Scholar : PubMed/NCBI

43 

Ehrlich LA, Chung HY, Ghobrial I, Choi SJ, Morandi F, Colla S, Rizzoli V, Roodman GD and Giuliani N: IL-3 is a potential inhibitor of osteoblast differentiation in multiple myeloma. Blood. 106:1407–1414. 2005. View Article : Google Scholar : PubMed/NCBI

44 

Lee JW, Chung HY, Ehrlich LA, Jelinek DF, Callander NS, Roodman GD and Choi SJ: IL-3 expression by myeloma cells increases both osteoclast formation and growth of myeloma cells. Blood. 103:2308–2315. 2004. View Article : Google Scholar : PubMed/NCBI

45 

Abe M, Hiura K, Wilde J, Shioyasono A, Moriyama K, Hashimoto T, Kido S, Oshima T, Shibata H, Ozaki S, et al: Osteoclasts enhance myeloma cell growth and survival via cell-cell contact: A vicious cycle between bone destruction and myeloma expansion. Blood. 104:2484–2491. 2004. View Article : Google Scholar : PubMed/NCBI

46 

Croucher PI, McDonald MM and Martin TJ: Bone metastasis: The importance of the neighbourhood. Nat Rev Cancer. 16:373–386. 2016. View Article : Google Scholar : PubMed/NCBI

47 

Ehrlich LA and Roodman GD: The role of immune cells and inflammatory cytokines in Paget's disease and multiple myeloma. Immunol Rev. 208:252–266. 2005. View Article : Google Scholar : PubMed/NCBI

48 

Emery JG, McDonnell P, Burke MB, Deen KC, Lyn S, Silverman C, Dul E, Appelbaum ER, Eichman C, DiPrinzio R, et al: Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem. 273:14363–14367. 1998. View Article : Google Scholar : PubMed/NCBI

49 

Heath DJ, Vanderkerken K, Cheng X, Gallagher O, Prideaux M, Murali R and Croucher PI: An osteoprotegerin-like peptidomimetic inhibits osteoclastic bone resorption and osteolytic bone disease in myeloma. Cancer Res. 67:202–208. 2007. View Article : Google Scholar : PubMed/NCBI

50 

Lawson MA, McDonald MM, Kovacic N, Hua Khoo W, Terry RL, Down J, Kaplan W, Paton-Hough J, Fellows C, Pettitt JA, et al: Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche. Nat Commun. 6:89832015. View Article : Google Scholar : PubMed/NCBI

51 

McDonald MM, Fairfield H, Falank C and Reagan MR: Adipose, bone, and myeloma: Contributions from the microenvironment. Calcif Tissue Int. 100:433–448. 2017. View Article : Google Scholar : PubMed/NCBI

52 

Fu R, Liu H, Zhao S, Wang Y, Li L, Gao S, Ruan E, Wang G, Wang H, Song J and Shao Z: Osteoblast inhibition by chemokine cytokine ligand3 in myeloma-induced bone disease. Cancer Cell Int. 14:1322014. View Article : Google Scholar : PubMed/NCBI

53 

Gavriatopoulou M, Dimopoulos MA, Christoulas D, Migkou M, Iakovaki M, Gkotzamanidou M and Terpos E: Dickkopf-1: A suitable target for the management of myeloma bone disease. Expert Opin Ther Targets. 13:839–848. 2009. View Article : Google Scholar : PubMed/NCBI

54 

Moester MJ, Papapoulos SE, Löwik CW and van Bezooijen RL: Sclerostin: Current knowledge and future perspectives. Calcif Tissue Int. 87:99–107. 2010. View Article : Google Scholar : PubMed/NCBI

55 

Zhou F, Meng S, Song H and Claret FX: Dickkopf-1 is a key regulator of myeloma bone disease: Opportunities and challenges for therapeutic intervention. Blood Rev. 27:261–267. 2013. View Article : Google Scholar : PubMed/NCBI

56 

Oshima T, Abe M, Asano J, Hara T, Kitazoe K, Sekimoto E, Tanaka Y, Shibata H, Hashimoto T, Ozaki S, et al: Myeloma cells suppress bone formation by secreting a soluble Wnt inhibitor, sFRP-2. Blood. 106:3160–3165. 2005. View Article : Google Scholar : PubMed/NCBI

57 

Delgado-Calle J, Anderson J, Cregor MD, Hiasa M, Chirgwin JM, Carlesso N, Yoneda T, Mohammad KS, Plotkin LI, Roodman GD and Bellido T: Bidirectional notch signaling and osteocyte-derived factors in the bone marrow microenvironment promote tumor cell proliferation and bone destruction in multiple myeloma. Cancer Res. 76:1089–1100. 2016. View Article : Google Scholar : PubMed/NCBI

58 

Reagan MR, Liaw L, Rosen CJ and Ghobrial IM: Dynamic interplay between bone and multiple myeloma: Emerging roles of the osteoblast. Bone. 75:161–169. 2015. View Article : Google Scholar : PubMed/NCBI

59 

Yaccoby S, Wezeman MJ, Zangari M, Walker R, Cottler-Fox M, Gaddy D, Ling W, Saha R, Barlogie B, Tricot G and Epstein J: Inhibitory effects of osteoblasts and increased bone formation on myeloma in novel culture systems and a myelomatous mouse model. Haematologica. 91:192–199. 2006.PubMed/NCBI

60 

Mitsiades CS, McMillin DW, Klippel S, Hideshima T, Chauhan D, Richardson PG, Munshi NC and Anderson KC: The role of the bone marrow microenvironment in the pathophysiology of myeloma and its significance in the development of more effective therapies. Hematol Oncol Clin North Am. 21:1007–1034, vii-viii. 2007. View Article : Google Scholar : PubMed/NCBI

61 

Shipman CM and Croucher PI: Osteoprotegerin is a soluble decoy receptor for tumor necrosis factor-related apoptosis-inducing ligand/Apo2 ligand and can function as a paracrine survival factor for human myeloma cells. Cancer Res. 63:912–916. 2003.PubMed/NCBI

62 

Scheller J and Rose-John S: Interleukin-6 and its receptor: From bench to bedside. Med Microbiol Immunol. 195:173–183. 2006. View Article : Google Scholar : PubMed/NCBI

63 

Suchi K, Fujiwara H, Okamura S, Okamura H, Umehara S, Todo M, Furutani A, Yoneda M, Shiozaki A, Kubota T, et al: Overexpression of Interleukin-6 suppresses cisplatin-induced cytotoxicity in esophageal squamous cell carcinoma cells. Anticancer Res. 31:67–75. 2011.PubMed/NCBI

64 

Hong DS, Angelo LS and Kurzrock R: Interleukin-6 and its receptor in cancer: Implications for translational therapeutics. Cancer. 110:1911–1928. 2007. View Article : Google Scholar : PubMed/NCBI

65 

Kawano M, Hirano T, Matsuda T, Taga T, Horii Y, Iwato K, Asaoku H, Tang B, Tanabe O, Tanaka H, et al: Autocrine generation and requirement of BSF-2/IL-6 for human multiple myelomas. Nature. 332:83–85. 1988. View Article : Google Scholar : PubMed/NCBI

66 

Rosean TR, Tompkins VS, Olivier AK, Sompallae R, Norian LA, Morse HC III, Waldschmidt TJ and Janz S: The tumor microenvironment is the main source of IL-6 for plasma cell tumor development in mice. Leukemia. 29:233–237. 2015. View Article : Google Scholar : PubMed/NCBI

67 

Matthes T, Manfroi B, Zeller A, Dunand-Sauthier I, Bogen B and Huard B: Autocrine amplification of immature myeloid cells by IL-6 in multiple myeloma-infiltrated bone marrow. Leukemia. 29:1882–1890. 2015. View Article : Google Scholar : PubMed/NCBI

68 

Rosean TR, Tompkins VS, Tricot G, Holman CJ, Olivier AK, Zhan F and Janz S: Preclinical validation of interleukin 6 as a therapeutic target in multiple myeloma. Immunol Res. 59:188–202. 2014. View Article : Google Scholar : PubMed/NCBI

69 

Qi C, Tian S, Wang J, Ma H, Qian K and Zhang X: Co-expression of CD40/CD40L on XG1 multiple myeloma cells promotes IL-6 autocrine function. Cancer Invest. 33:6–15. 2015. View Article : Google Scholar : PubMed/NCBI

70 

Westendorf JJ, Ahmann GJ, Armitage RJ, Spriggs MK, Lust JA, Greipp PR, Katzmann JA and Jelinek DF: CD40 expression in malignant plasma cells. Role in stimulation of autocrine IL-6 secretion by a human myeloma cell line. J Immunol. 152:117–128. 1994.PubMed/NCBI

71 

Dinarello CA: Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood. 117:3720–3732. 2011. View Article : Google Scholar : PubMed/NCBI

72 

Tu Y, Gardner A and Lichtenstein A: The phosphatidylinositol 3-kinase/AKT kinase pathway in multiple myeloma plasma cells: Roles in cytokine-dependent survival and proliferative responses. Cancer Res. 60:6763–6770. 2000.PubMed/NCBI

73 

Hideshima T, Nakamura N, Chauhan D and Anderson KC: Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma. Oncogene. 20:5991–6000. 2001. View Article : Google Scholar : PubMed/NCBI

74 

Hsu JH, Shi Y, Hu L, Fisher M, Franke TF and Lichtenstein A: Role of the AKT kinase in expansion of multiple myeloma clones: Effects on cytokine-dependent proliferative and survival responses. Oncogene. 21:1391–1400. 2002. View Article : Google Scholar : PubMed/NCBI

75 

Sansone P and Bromberg J: Targeting the interleukin-6/Jak/stat pathway in human malignancies. J Clin Oncol. 30:1005–1014. 2012. View Article : Google Scholar : PubMed/NCBI

76 

Matthes T, Manfroi B and Huard B: Revisiting IL-6 antagonism in multiple myeloma. Crit Rev Oncol Hematol. 105:1–4. 2016. View Article : Google Scholar : PubMed/NCBI

77 

Monaghan KA, Khong T, Burns CJ and Spencer A: The novel JAK inhibitor CYT387 suppresses multiple signalling pathways, prevents proliferation and induces apoptosis in phenotypically diverse myeloma cells. Leukemia. 25:1891–1899. 2011. View Article : Google Scholar : PubMed/NCBI

78 

Chauhan D, Kharbanda S, Ogata A, Urashima M, Teoh G, Robertson M, Kufe DW and Anderson KC: Interleukin-6 inhibits Fas-induced apoptosis and stress-activated protein kinase activation in multiple myeloma cells. Blood. 89:227–234. 1997.PubMed/NCBI

79 

Burger R: Impact of interleukin-6 in hematological malignancies. Transfus Med Hemother. 40:336–343. 2013. View Article : Google Scholar : PubMed/NCBI

80 

Orlowski RZ, Gercheva L, Williams C, Sutherland H, Robak T, Masszi T, Goranova-Marinova V, Dimopoulos MA, Cavenagh JD, Špička I, et al: A phase 2, randomized, double-blind, placebo-controlled study of siltuximab (anti-IL-6 mAb) and bortezomib versus bortezomib alone in patients with relapsed or refractory multiple myeloma. Am J Hematol. 90:42–49. 2015. View Article : Google Scholar : PubMed/NCBI

81 

San-Miguel J, Bladé J, Shpilberg O, Grosicki S, Maloisel F, Min CK, Polo Zarzuela M, Robak T, Prasad SV, Tee Goh Y, et al: Phase 2 randomized study of bortezomib-melphalan-prednisone with or without siltuximab (anti-IL-6) in multiple myeloma. Blood. 123:4136–4142. 2014. View Article : Google Scholar : PubMed/NCBI

82 

Voorhees PM, Manges RF, Sonneveld P, Jagannath S, Somlo G, Krishnan A, Lentzsch S, Frank RC, Zweegman S, Wijermans PW, et al: A phase 2 multicentre study of siltuximab, an anti-interleukin-6 monoclonal antibody, in patients with relapsed or refractory multiple myeloma. Br J Haematol. 161:357–366. 2013. View Article : Google Scholar : PubMed/NCBI

83 

Guo DJ, Han JS, Li YS, Liu ZS, Lu SY and Ren HL: In vitro and in vivo antitumor effects of the recombinant immunotoxin IL6(T23)-PE38KDEL in multiple myeloma. Oncol Lett. 4:311–318. 2012. View Article : Google Scholar : PubMed/NCBI

84 

Younes A, Romaguera J, Fanale M, McLaughlin P, Hagemeister F, Copeland A, Neelapu S, Kwak L, Shah J, de Castro Faria S, et al: Phase I study of a novel oral Janus kinase 2 inhibitor, SB1518, in patients with relapsed lymphoma: Evidence of clinical and biologic activity in multiple lymphoma subtypes. J Clin Oncol. 30:4161–4167. 2012. View Article : Google Scholar : PubMed/NCBI

85 

Garcia-Bates TM, Bernstein SH and Phipps RP: Peroxisome proliferator-activated receptor gamma overexpression suppresses growth and induces apoptosis in human multiple myeloma cells. Clin Cancer Res. 14:6414–6425. 2008. View Article : Google Scholar : PubMed/NCBI

86 

Sprynski AC, Hose D, Caillot L, Réme T, Shaughnessy JD Jr, Barlogie B, Seckinger A, Moreaux J, Hundemer M, Jourdan M, et al: The role of IGF-1 as a major growth factor for myeloma cell lines and the prognostic relevance of the expression of its receptor. Blood. 113:4614–4626. 2009. View Article : Google Scholar : PubMed/NCBI

87 

Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehár J, Kryukov GV, Sonkin D, et al: The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 483:603–607. 2012. View Article : Google Scholar : PubMed/NCBI

88 

Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Shringarpure R, Akiyama M, Hideshima T, Chauhan D, Joseph M, Libermann TA, et al: Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma, other hematologic malignancies, and solid tumors. Cancer Cell. 5:221–230. 2004. View Article : Google Scholar : PubMed/NCBI

89 

Bieghs L, Lub S, Fostier K, Maes K, Van Valckenborgh E, Menu E, Johnsen HE, Overgaard MT, Larsson O, Axelson M, et al: The IGF-1 receptor inhibitor picropodophyllin potentiates the anti-myeloma activity of a BH3-mimetic. Oncotarget. 5:11193–11208. 2014. View Article : Google Scholar : PubMed/NCBI

90 

Kuhn DJ, Berkova Z, Jones RJ, Woessner R, Bjorklund CC, Ma W, Davis RE, Lin P, Wang H, Madden TL, Wei C, et al: Targeting the insulin-like growth factor-1 receptor to overcome bortezomib resistance in preclinical models of multiple myeloma. Blood. 120:3260–3270. 2012. View Article : Google Scholar : PubMed/NCBI

91 

Bieghs L, Brohus M, Kristensen IB, Abildgaard N, Bøgsted M, Johnsen HE, Conover CA, De Bruyne E, Vanderkerken K, Overgaard MT and Nyegaard M: Abnormal IGF-binding protein profile in the bone marrow of multiple myeloma patients. PLoS One. 11:e01542562016. View Article : Google Scholar : PubMed/NCBI

92 

Jelinek DF, Witzig TE and Arendt BK: A role for insulin-like growth factor in the regulation of IL-6-responsive human myeloma cell line growth. J Immunol. 159:487–496. 1997.PubMed/NCBI

93 

Georgii-Hemming P, Wiklund HJ, Ljunggren O and Nilsson K: Insulin-like growth factor I is a growth and survival factor in human multiple myeloma cell lines. Blood. 88:2250–2258. 1996.PubMed/NCBI

94 

Chapuis N, Tamburini J, Cornillet-Lefebvre P, Gillot L, Bardet V, Willems L, Park S, Green AS, Ifrah N, Dreyfus F, et al: Autocrine IGF-1/IGF-1R signaling is responsible for constitutive PI3K/Akt activation in acute myeloid leukemia: Therapeutic value of neutralizing anti-IGF-1R antibody. Haematologica. 95:415–423. 2010. View Article : Google Scholar : PubMed/NCBI

95 

Chiron D, Maiga S, Surget S, Descamps G, Gomez-Bougie P, Traore S, Robillard N, Moreau P, Le Gouill S, Bataille R, et al: Autocrine insulin-like growth factor 1 and stem cell factor but not interleukin 6 support self-renewal of human myeloma cells. Blood Cancer J. 3:e1202013. View Article : Google Scholar : PubMed/NCBI

96 

Huang EW, Xue SJ, Li XY, Xu SW, Cheng JD, Zheng JX, Shi H, Lv GL, Li ZG, Li Y, et al: EEN regulates the proliferation and survival of multiple myeloma cells by potentiating IGF-1 secretion. Biochem Biophys Res Commun. 447:271–277. 2014. View Article : Google Scholar : PubMed/NCBI

97 

Vishwamitra D, George SK, Shi P, Kaseb AO and Amin HM: Type I insulin-like growth factor receptor signaling in hematological malignancies. Oncotarget. 8:1814–1844. 2017. View Article : Google Scholar : PubMed/NCBI

98 

Ge NL and Rudikoff S: Insulin-like growth factor I is a dual effector of multiple myeloma cell growth. Blood. 96:2856–2861. 2000.PubMed/NCBI

99 

Bieghs L, Johnsen HE, Maes K, Menu E, Van Valckenborgh E, Overgaard MT, Nyegaard M, Conover CA, Vanderkerken K and De Bruyne E: The insulin-like growth factor system in multiple myeloma: Diagnostic and therapeutic potential. Oncotarget. 7:48732–48752. 2016. View Article : Google Scholar : PubMed/NCBI

100 

Vanderkerken K, Asosingh K, Braet F, Van Riet I and Van Camp B: Insulin-like growth factor-1 acts as a chemoattractant factor for 5T2 multiple myeloma cells. Blood. 93:235–241. 1999.PubMed/NCBI

101 

Asosingh K, Günthert U, Bakkus MH, De Raeve H, Goes E, Van Riet I, Van Camp B and Vanderkerken K: In vivo induction of insulin-like growth factor-I receptor and CD44v6 confers homing and adhesion to murine multiple myeloma cells. Cancer Res. 60:3096–3104. 2000.PubMed/NCBI

102 

Ogata A, Chauhan D, Urashima M, Teoh G, Treon SP and Anderson KC: Blockade of mitogen-activated protein kinase cascade signaling in interleukin 6-independent multiple myeloma cells. Clin Cancer Res. 3:1017–1022. 1997.PubMed/NCBI

103 

Podar K and Anderson KC: The pathophysiologic role of VEGF in hematologic malignancies: Therapeutic implications. Blood. 105:1383–1395. 2005. View Article : Google Scholar : PubMed/NCBI

104 

Andersen NF, Vogel U, Klausen TW, Gimsing P, Gregersen H, Abildgaard N and Vangsted AJ: Vascular endothelial growth factor (VEGF) gene polymorphisms may influence the efficacy of thalidomide in multiple myeloma. Int J Cancer. 131:E636–E642. 2012. View Article : Google Scholar : PubMed/NCBI

105 

Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS and Dvorak HF: Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science. 219:983–985. 1983. View Article : Google Scholar : PubMed/NCBI

106 

Weis SM and Cheresh DA: Tumor angiogenesis: Molecular pathways and therapeutic targets. Nat Med. 17:1359–1370. 2011. View Article : Google Scholar : PubMed/NCBI

107 

Asosingh K, De Raeve H, Menu E, Van Riet I, Van Marck E, Van Camp B and Vanderkerken K: Angiogenic switch during 5T2MM murine myeloma tumorigenesis: Role of CD45 heterogeneity. Blood. 103:3131–3137. 2004. View Article : Google Scholar : PubMed/NCBI

108 

Bhutani M, Turkbey B, Tan E, Kemp TJ, Pinto LA, Berg AR, Korde N, Minter AR, Weiss BM, Mena E, et al: Bone marrow angiogenesis in myeloma and its precursor disease: A prospective clinical trial. Leukemia. 28:413–416. 2014. View Article : Google Scholar : PubMed/NCBI

109 

Hose D, Moreaux J, Meissner T, Seckinger A, Goldschmidt H, Benner A, Mahtouk K, Hillengass J, Rème T, De Vos J, et al: Induction of angiogenesis by normal and malignant plasma cells. Blood. 114:128–143. 2009. View Article : Google Scholar : PubMed/NCBI

110 

Taylor RM, Kashima TG, Knowles HJ and Athanasou NA: VEGF, FLT3 ligand, PlGF and HGF can substitute for M-CSF to induce human osteoclast formation: Implications for giant cell tumour pathobiology. Lab Invest. 92:1398–1406. 2012. View Article : Google Scholar : PubMed/NCBI

111 

Terpos E, Christoulas D, Gavriatopoulou M and Dimopoulos MA: Mechanisms of bone destruction in multiple myeloma. Eur J Cancer Care (Engl). 26:2017. View Article : Google Scholar : PubMed/NCBI

112 

Neviani P and Fabbri M: Exosomic microRNAs in the tumor microenvironment. Front Med (Lausanne). 2:472015.PubMed/NCBI

113 

Wang X, Lu H, Li T, Yu L, Liu G, Peng X and Zhao J: Krüppel-like factor 8 promotes tumorigenic mammary stem cell induction by targeting miR-146a. Am J Cancer Res. 3:356–373. 2013.PubMed/NCBI

114 

Corrado C, Raimondo S, Chiesi A, Ciccia F, De Leo G and Alessandro R: Exosomes as intercellular signaling organelles involved in health and disease: Basic science and clinical applications. Int J Mol Sci. 14:5338–5366. 2013. View Article : Google Scholar : PubMed/NCBI

115 

Raimondo S, Corrado C, Raimondi L, De Leo G and Alessandro R: Role of extracellular vesicles in hematological malignancies. Biomed Res Int. 2015:8216132015. View Article : Google Scholar : PubMed/NCBI

116 

Zijlstra A and Di Vizio D: Size matters in nanoscale communication. Nat Cell Biol. 20:228–230. 2018. View Article : Google Scholar : PubMed/NCBI

117 

Amodio N, Di Martino MT, Neri A, Tagliaferri P and Tassone P: Non-coding RNA: A novel opportunity for the personalized treatment of multiple myeloma. Expert Opin Biol Ther. 13 (Suppl 1):S125–S137. 2013. View Article : Google Scholar : PubMed/NCBI

118 

Ohtsuka M, Ling H, Doki Y, Mori M and Calin GA: MicroRNA processing and human cancer. J Clin Med. 4:1651–1667. 2015. View Article : Google Scholar : PubMed/NCBI

119 

De Veirman K, Wang J, Xu S, Leleu X, Himpe E, Maes K, De Bruyne E, Van Valckenborgh E, Vanderkerken K, Menu E and Van Riet I: Induction of miR-146a by multiple myeloma cells in mesenchymal stromal cells stimulates their pro-tumoral activity. Cancer Lett. 377:17–24. 2016. View Article : Google Scholar : PubMed/NCBI

120 

Forloni M, Dogra SK, Dong Y, Conte D Jr, Ou J, Zhu LJ, Deng A, Mahalingam M, Green MR and Wajapeyee N: miR-146a promotes the initiation and progression of melanoma by activating Notch signaling. Elife. 3:e014602014. View Article : Google Scholar : PubMed/NCBI

121 

Raimondi L, De Luca A, Amodio N, Manno M, Raccosta S, Taverna S, Bellavia D, Naselli F, Fontana S, Schillaci O, et al: Involvement of multiple myeloma cell-derived exosomes in osteoclast differentiation. Oncotarget. 6:13772–13789. 2015. View Article : Google Scholar : PubMed/NCBI

122 

Raimondo S, Saieva L, Vicario E, Pucci M, Toscani D, Manno M, Raccosta S, Giuliani N and Alessandro R: Multiple myeloma-derived exosomes are enriched of amphiregulin (AREG) and activate the epidermal growth factor pathway in the bone microenvironment leading to osteoclastogenesis. J Hematol Oncol. 12:22019. View Article : Google Scholar : PubMed/NCBI

123 

Faict S, Muller J, De Veirman K, De Bruyne E, Maes K, Vrancken L, Heusschen R, De Raeve H, Schots R, Vanderkerken K, et al: Exosomes play a role in multiple myeloma bone disease and tumor development by targeting osteoclasts and osteoblasts. Blood Cancer J. 8:1052018. View Article : Google Scholar : PubMed/NCBI

124 

Kocemba KA, van Andel H, de Haan-Kramer A, Mahtouk K, Versteeg R, Kersten MJ, Spaargaren M and Pals ST: The hypoxia target adrenomedullin is aberrantly expressed in multiple myeloma and promotes angiogenesis. Leukemia. 27:1729–1737. 2013. View Article : Google Scholar : PubMed/NCBI

125 

Umezu T, Tadokoro H, Azuma K, Yoshizawa S, Ohyashiki K and Ohyashiki JH: Exosomal miR-135b shed from hypoxic multiple myeloma cells enhances angiogenesis by targeting factor-inhibiting HIF-1. Blood. 124:3748–3757. 2014. View Article : Google Scholar : PubMed/NCBI

126 

Lai RC, Chen TS and Lim SK: Mesenchymal stem cell exosome: A novel stem cell-based therapy for cardiovascular disease. Regen Med. 6:481–492. 2011. View Article : Google Scholar : PubMed/NCBI

127 

Tomasoni S, Longaretti L, Rota C, Morigi M, Conti S, Gotti E, Capelli C, Introna M, Remuzzi G and Benigni A: Transfer of growth factor receptor mRNA via exosomes unravels the regenerative effect of mesenchymal stem cells. Stem Cells Dev. 22:772–780. 2013. View Article : Google Scholar : PubMed/NCBI

128 

Chi Y, Yin X, Sun K, Feng S, Liu J, Chen D, Guo C and Wu Z: Redox-sensitive and hyaluronic acid functionalized liposomes for cytoplasmic drug delivery to osteosarcoma in animal models. J Control Release. 261:113–125. 2017. View Article : Google Scholar : PubMed/NCBI

129 

Becker PS, Gooley TA, Green DJ, Burwick N, Kim TY, Kojouri K, Inoue Y, Moore DJ, Nelli E, Dennie T and Bensinger WI: A phase 2 study of bortezomib, cyclophosphamide, pegylated liposomal doxorubicin and dexamethasone for newly diagnosed multiple myeloma. Blood Cancer J. 6:e4222016. View Article : Google Scholar : PubMed/NCBI

130 

Umezu T, Imanishi S, Azuma K, Kobayashi C, Yoshizawa S, Ohyashiki K and Ohyashiki JH: Replenishing exosomes from older bone marrow stromal cells with miR-340 inhibits myeloma-related angiogenesis. Blood Adv. 1:812–823. 2017. View Article : Google Scholar : PubMed/NCBI

131 

Hideshima T, Mitsiades C, Akiyama M, Hayashi T, Chauhan D, Richardson P, Schlossman R, Podar K, Munshi NC, Mitsiades N and Anderson KC: Molecular mechanisms mediating antimyeloma activity of proteasome inhibitor PS-341. Blood. 101:1530–1534. 2003. View Article : Google Scholar : PubMed/NCBI

132 

Chauhan D, Singh A, Brahmandam M, Podar K, Hideshima T, Richardson P, Munshi N, Palladino MA and Anderson KC: Combination of proteasome inhibitors bortezomib and NPI-0052 trigger in vivo synergistic cytotoxicity in multiple myeloma. Blood. 111:1654–1664. 2008. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

October 2019
Volume 42 Issue 4

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Hou, J., Wei, R., Qian, J., Wang, R., Fan, Z., Gu, C., & Yang, Y. (2019). The impact of the bone marrow microenvironment on multiple myeloma (Review). Oncology Reports, 42, 1272-1282. https://doi.org/10.3892/or.2019.7261
MLA
Hou, J., Wei, R., Qian, J., Wang, R., Fan, Z., Gu, C., Yang, Y."The impact of the bone marrow microenvironment on multiple myeloma (Review)". Oncology Reports 42.4 (2019): 1272-1282.
Chicago
Hou, J., Wei, R., Qian, J., Wang, R., Fan, Z., Gu, C., Yang, Y."The impact of the bone marrow microenvironment on multiple myeloma (Review)". Oncology Reports 42, no. 4 (2019): 1272-1282. https://doi.org/10.3892/or.2019.7261