Emodin: Its role in prostate cancer‑associated inflammation (Review)

  • Authors:
    • Yanjie Tu
    • Zhonghua Wu
    • Bo Tan
    • Aidong Yang
    • Zhaoqin Fang
  • View Affiliations

  • Published online on: August 6, 2019     https://doi.org/10.3892/or.2019.7264
  • Pages: 1259-1271
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Prostate cancer is one of the most common malignancies diagnosed in males. Cancer‑related inflammatory factors include tumor necrosis factor, inflammasomes, cytokines, chemokines, transcription factors, infiltrating or circulating immune cells, reactive oxygen species, and sex hormone receptors. These are mainly associated with the local immune response at the tumor site. Emodin, a chemical compound that can be isolated from the plant rhubarb among others, has been shown to exhibit anti‑inflammatory and anticancer properties in prostate cancer. This review summarizes the effects of emodin on prostate cancer and analyzes whether it interferes with prostate cancer through anti‑inflammatory pathways. New information regarding the development of emodin derivatives including their increased solubility and reduced side effects through chemical structure modifications is also reviewed.

References

1 

Torre LA, Siegel RL, Ward EM and Jemal A: Global cancer incidence and mortality rates and trends-an update. Cancer Epidemiol Biomarkers Prev. 25:16–27. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Pang C, Guan Y, Li H, Chen W and Zhu G: Urologic cancer in China. Jpn J Clin Oncol. 46:497–501. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Yang KQ, Liu Y, Huang QH, Mo N, Zhang QY, Meng QG and Cheng JW: Bone marrow-derived mesenchymal stem cells induced by inflammatory cytokines produce angiogenetic factors and promote prostate cancer growth. BMC Cancer. 17:8782017. View Article : Google Scholar : PubMed/NCBI

4 

Balkwill F and Mantovani A: Inflammation and cancer: Back to virchow? Lancet. 357:539–545. 2001. View Article : Google Scholar : PubMed/NCBI

5 

Daniels NA, Ewing SK, Zmuda JM, Wilt TJ and Bauer DC; Osteoporotic Fractures in Men (MrOS) Research Group, : Correlates and prevalence of prostatitis in a large community-based cohort of older men. Urology. 66:964–970. 2005. View Article : Google Scholar : PubMed/NCBI

6 

De Marzo AM, Marchi VL, Epstein JI and Nelson WG: Proliferative inflammatory atrophy of the prostate: Implications for prostatic carcinogenesis. Am J Pathol. 155:1985–1992. 1999. View Article : Google Scholar : PubMed/NCBI

7 

Dong X, Fu J, Yin X, Cao S, Li X, Lin L and Ni J; Huyiligeqi: Emodin: A review of its pharmacology, toxicity and pharmacokinetics. Phytother Res. 30:1207–1218. 2016. View Article : Google Scholar : PubMed/NCBI

8 

Cha TL, Qiu L, Chen CT, Wen Y and Hung MC: Emodin down-regulates androgen receptor and inhibits prostate cancer cell growth. Cancer Res. 65:2287–2295. 2005. View Article : Google Scholar : PubMed/NCBI

9 

Diakos CI, Charles KA, McMillan DC and Clarke SJ: Cancer-related inflammation and treatment effectiveness. Lancet Oncol. 15:e493–e503. 2014. View Article : Google Scholar : PubMed/NCBI

10 

Liu Z, Xiao B, Mao XH and Zou QM: Research progress on relationship between inflammationand tumor. Prog Mod Biomed. 9:591–594. 2009.

11 

Karan D and Dubey S: From inflammation to prostate cancer: The role of inflammasomes. Adv Urol. 2016:31403722016. View Article : Google Scholar : PubMed/NCBI

12 

Taniguchi K and Karin M: NF-κB, inflammation, immunity and cancer: Coming of age. Nat Rev Immunol. 18:309–324. 2018. View Article : Google Scholar : PubMed/NCBI

13 

Mantovani A, Allavena P, Sica A and Balkwill F: Cancer-related inflammation. Nature. 454:436–444. 2008. View Article : Google Scholar : PubMed/NCBI

14 

Laberge RM, Sun Y, Orjalo AV, Patil CK, Freund A, Zhou L, Curran SC, Davalos AR, Wilson-Edell KA, Liu S, et al: MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat Cell Biol. 17:1049–1061. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Liu K, Park C, Li S, Lee KW, Liu H, He L, Soung NK, Ahn JS, Bode AM, Dong Z, et al: Aloe-emodin suppresses prostate cancer by targeting the mTOR complex 2. Carcinogenesis. 33:1406–1411. 2012. View Article : Google Scholar : PubMed/NCBI

16 

Denko NC: Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer. 8:705–713. 2008. View Article : Google Scholar : PubMed/NCBI

17 

Shalapour S and Karin M: Immunity, inflammation, and cancer: An eternal fight between good and evil. J Clin Invest. 125:3347–3355. 2015. View Article : Google Scholar : PubMed/NCBI

18 

Zhang Y, Liang C and Chen X: Research progress on the relationship between chronic prostatic inflammation and prostate cancer. J Mod Urol. 20:207–210. 2015.

19 

Zhang Q, Liu S, Ge D, Zhang Q, Xue Y, Xiong Z, Abdel-Mageed AB, Myers L, Hill SM, Rowan BG, et al: Interleukin-17 promotes formation and growth of prostate adenocarcinoma in mouse models. Cancer Res. 72:2589–2599. 2012. View Article : Google Scholar : PubMed/NCBI

20 

Hong JT, Son DJ, Lee CK, Yoon DY, Lee DH and Park MH: Interleukin 32, inflammation and cancer. Pharmacol Ther. 174:127–137. 2017. View Article : Google Scholar : PubMed/NCBI

21 

Wang Z and Qi Y: Inflammation: Tumor catalyst. World Latest Med Inf. 16:70–71. 2016.

22 

Sfanos KS, Yegnasubramanian S, Nelson WG and De Marzo AM: The inflammatory microenvironment and microbiome in prostate cancer development. Nat Rev Urol. 15:11–24. 2018. View Article : Google Scholar : PubMed/NCBI

23 

Sfanos KS, Bruno TC, Maris CH, Xu L, Thoburn CJ, DeMarzo AM, Meeker AK, Isaacs WB and Drake CG: Phenotypic analysis of prostate-infiltrating lymphocytes reveals TH17 and Treg skewing. Clin Cancer Res. 14:3254–3261. 2008. View Article : Google Scholar : PubMed/NCBI

24 

Su huan and Chen ming: Research progress on the mechanism of inflammatory response and tumor microenvironment in prostate cancer. J Southeast Univ. 36:847–851. 2017.(Medical Science Edition).

25 

Mills EL, Kelly B and O'Neill LAJ: Mitochondria are the powerhouses of immunity. Nat Immunol. 18:488–498. 2017. View Article : Google Scholar : PubMed/NCBI

26 

Afshar-Kharghan V: The role of the complement system in cancer. J Clin Invest. 127:780–789. 2017. View Article : Google Scholar : PubMed/NCBI

27 

Zhou W, Hu W and Xu W: Effects of CXCL16/CXCR6 axis on proliferation and invasion of human prostate cancer cell line in vitro. Med J Wuhan University. 31:479–482. 2010.

28 

Kuo PL, Shen KH, Hung SH and Hsu YL: CXCL1/GROα increases cell migration and invasion of prostate cancer by decreasing fibulin-1 expression through NF-κB/HDAC1 epigenetic regulation. Carcinogenesis. 33:2477–2487. 2012. View Article : Google Scholar : PubMed/NCBI

29 

Yang L, et al: The relationship between chemokines, inflammation, and prostate cancer. Mod Prev Med. 42:952–956. 2015.

30 

Schoenfeld JD, Margalit DN, Kasperzyk JL, Shui IM, Rider JR, Epstein MM, Meisner A, Kenfield SA, Martin NE, Nguyen PL, et al: A single nucleotide polymorphism in inflammatory gene RNASEL predicts outcome after radiation therapy for localized prostate cancer. Clin Cancer Res. 19:1612–1619. 2013. View Article : Google Scholar : PubMed/NCBI

31 

Wiklund F, Jonsson BA, Brookes AJ, Strömqvist L, Adolfsson J, Emanuelsson M, Adami HO, Augustsson-Bälter K and Grönberg H: Genetic analysis of the RNASEL gene in hereditary, familial, and sporadic prostate cancer. Clin Cancer Res. 10:7150–7156. 2004. View Article : Google Scholar : PubMed/NCBI

32 

Izumi K, Li L and Chang C: Androgen receptor and immune inflammation in benign prostatic hyperplasia and prostate cancer. Clin Investig (Lond). 4:935–950. 2014. View Article : Google Scholar : PubMed/NCBI

33 

Wu ZL, Yuan Y, Geng H and Xia SJ: Influence of immune inflammation on androgen receptor expression in benign prostatic hyperplasia tissue. Asian J Androl. 14:316–319. 2012. View Article : Google Scholar : PubMed/NCBI

34 

Wang X, Lin WJ, Izumi K, Jiang Q, Lai KP, Xu D, Fang LY, Lu T, Li L, Xia S and Chang C: Increased infiltrated macrophages in benign prostatic hyperplasia (BPH): Role of stromal androgen receptor in macrophage-induced prostate stromal cell proliferation. J Biol Chem. 287:18376–18385. 2012. View Article : Google Scholar : PubMed/NCBI

35 

Vignozzi L, Cellai I, Santi R, Lombardelli L, Morelli A, Comeglio P, Filippi S, Logiodice F, Carini M, Nesi G, et al: Antiinflammatory effect of androgen receptor activation in human benign prostatic hyperplasia cells. J Endocrinol. 214:31–43. 2012. View Article : Google Scholar : PubMed/NCBI

36 

Ellem SJ, Wang H, Poutanen M and Risbridger GP: Increased endogenous estrogen synthesis leads to the sequential induction of prostatic inflammation (prostatitis) and prostatic pre-malignancy. Am J Pathol. 175:1187–1199. 2009. View Article : Google Scholar : PubMed/NCBI

37 

Aryee MJ, Liu W, Engelmann JC, Nuhn P, Gurel M, Haffner MC, Esopi D, Irizarry RA, Getzenberg RH, Nelson WG, et al: DNA methylation alterations exhibit intraindividual stability and interindividual heterogeneity in prostate cancer metastases. Sci Transl Med. 5:169ra102013. View Article : Google Scholar : PubMed/NCBI

38 

Mani RS, Amin MA, Li X, Kalyana-Sundaram S, Veeneman BA, Wang L, Ghosh A, Aslam A, Ramanand SG, Rabquer BJ, et al: Inflammation-induced oxidative stress mediates gene fusion formation in prostate cancer. Cell Rep. 17:2620–2631. 2016. View Article : Google Scholar : PubMed/NCBI

39 

Giraud F, Akué-Gédu R, Nauton L, Candelon N, Debiton E, Théry V, Anizon F and Moreau P: Synthesis and biological activities of 4-substituted pyrrolo[2,3-a]carbazole Pim kinase inhibitors. Eur J Med Chem. 56:225–236. 2012. View Article : Google Scholar : PubMed/NCBI

40 

Deng G, Ju X, Meng Q, Yu ZJ and Ma LB: Emodin inhibits the proliferation of PC3 prostate cancer cells in vitro via the Notch signaling pathway. Mol Med Rep. 12:4427–4433. 2015. View Article : Google Scholar : PubMed/NCBI

41 

Masaldan S and Iyer VV: Exploration of effects of emodin in selected cancer cell lines: Enhanced growth inhibition by ascorbic acid and regulation of LRP1 and AR under hypoxia-like conditions. J Appl Toxicol. 34:95–104. 2014. View Article : Google Scholar : PubMed/NCBI

42 

Ok S, Kim SM, Kim C, Nam D, Shim BS, Kim SH and Ahn KS, Choi SH and Ahn KS: Emodin inhibits invasion and migration of prostate and lung cancer cells by downregulating the expression of chemokine receptor CXCR4. Immunopharmacol Immunotoxicol. 34:768–778. 2012. View Article : Google Scholar : PubMed/NCBI

43 

Yu CX, Zhang XQ, Kang LD, Zhang PJ, Chen WW, Liu WW, Liu QW and Zhang JY: Emodin induces apoptosis in human prostate cancer cell LNCaP. Asian J Androl. 10:625–634. 2008. View Article : Google Scholar : PubMed/NCBI

44 

Huang XZ, Wang J, Huang C, Chen YY, Shi GY, Hu QS and Yi J: Emodin enhances cytotoxicity of chemotherapeutic drugs in prostate cancer cells: The mechanisms involve ROS-mediated suppression of multidrug resistance and hypoxia inducible factor-1. Cancer Biol Ther. 7:468–475. 2008. View Article : Google Scholar : PubMed/NCBI

45 

Kumar S, Yadav M, Yadav A, Rohilla P and Yadav JP: Antiplasmodial potential and quantification of aloin and aloe-emodin in Aloe vera collected from different climatic regions of India. BMC Complement Altern Med. 17:3692017. View Article : Google Scholar : PubMed/NCBI

46 

Mijatovic S, Maksimovic-Ivanic D, Radovic J, Miljkovic DJ, Harhaji LJ, Vuckovic O, Stosic-Grujicic S, Mostarica Stojkovic M and Trajkovic V: Anti-glioma action of aloe emodin: The role of ERK inhibition. Cell Mol Life Sci. 62:589–598. 2005. View Article : Google Scholar : PubMed/NCBI

47 

Yan Y, Su X, Liang Y, Zhang J, Shi C, Lu Y, Gu L and Fu L: Emodin azide methyl anthraquinone derivative triggers mitochondrial-dependent cell apoptosis involving in caspase-8- mediated bid cleavage. Mol Cancer Ther. 7:1688–1697. 2008. View Article : Google Scholar : PubMed/NCBI

48 

Yan YY, Zheng LS, Zhang X, Chen LK, Singh S, Wang F, Zhang JY, Liang YJ, Dai CL, Gu LQ, et al: Blockade of Her2/neu binding to Hsp90 by emodin azide methyl anthraquinone derivative induces proteasomal degradation of Her2/neu. Mol Pharm. 8:1687–1697. 2011. View Article : Google Scholar : PubMed/NCBI

49 

Yan YY, Fu LW, Zhang W, Ma HS, Ma CG, Liang YJ, Liu BY, Yu JZ, Wu QZ and Dong YM: Emodin azide methyl anthraquinone derivative induced G0/G1 arrest in HER2/neu-overexpressing MDA-MB-453 breast cancer cells. J BUON. 19:650–655. 2014.PubMed/NCBI

50 

Wen-Feng W, Feng-Sen Z, Wen-Na Z, Ze-Dong B, Hui-Jun Y, Jing-Wei S and Yao-Feng Y: The synthesis, structural study and anticancer activity evaluation of emodin derivatives containing conjugative groups. Med Chem. 9:545–552. 2013. View Article : Google Scholar : PubMed/NCBI

51 

Xing JY, Song GP, Deng JP, Jiang LZ, Xiong P, Yang BJ and Liu SS: Antitumor effects and mechanism of novel emodin rhamnoside derivatives against human cancer cells in vitro. PLoS One. 10:e01447812015. View Article : Google Scholar : PubMed/NCBI

52 

Thimmegowda NR, Park C, Shwetha B, Sakchaisri K, Liu K, Hwang J, Lee S, Jeong SJ, Soung NK, Jang JH, et al: Synthesis and antitumor activity of natural compound aloe emodin derivatives. Chem Biol Drug Des. 85:638–644. 2015. View Article : Google Scholar : PubMed/NCBI

53 

Gebhardt R, Lerche KS, Götschel F, Günther R, Kolander J, Teich L, Zellmer S, Hofmann HJ, Eger K, Hecht A and Gaunitz F: 4-Aminoethylamino-emodin-a novel potent inhibitor of GSK-3beta-acts as an insulin-sensitizer avoiding downstream effects of activated beta-catenin. J Cell Mol Med. 14:1276–1293. 2010. View Article : Google Scholar : PubMed/NCBI

54 

Yang X, Zhao W, Hu X, Hao X, Hong F, Wang J, Xiang L, Zhu Y, Yuan Y, Ho RJ, et al: Synthesis, characterization, and anticancer activity of novel lipophilic emodin cationic derivatives. Chem Biol Drug Des. 86:1451–1457. 2015. View Article : Google Scholar : PubMed/NCBI

55 

Lee YR, Chen TC, Lee CC, Chen CL, Ahmed Ali AA, Tikhomirov A, Guh JH, Yu DS and Huang HS: Ring fusion strategy for synthesis and lead optimization of sulfur-substituted anthra[1,2-c][1,2,5]thiadiazole-6,11-dione derivatives as promising scaffold of antitumor agents. Eur J Med Chem. 102:661–676. 2015. View Article : Google Scholar : PubMed/NCBI

56 

Silva JAF, Bruni-Cardoso A, Augusto TM, Damas-Souza DM, Barbosa GO, Felisbino SL, Stach-Machado DR and Carvalho HF: Macrophage roles in the clearance of apoptotic cells and control of inflammation in the prostate gland after castration. Prostate. 78:95–103. 2018. View Article : Google Scholar : PubMed/NCBI

57 

Dart DA, Uysal-Onganer P and Jiang WG: Prostate-specific PTen deletion in mice activates inflammatory microRNA expression pathways in the epithelium early in hyperplasia development. Oncogenesis. 6:4002017. View Article : Google Scholar : PubMed/NCBI

58 

Mantovani A: Cancer: An infernal triangle. Nature. 448:547–548. 2007. View Article : Google Scholar : PubMed/NCBI

59 

Baek HS, Park N, Kwon YJ, Ye DJ, Shin S and Chun YJ: Annexin A5 suppresses cyclooxygenase-2 expression by downregulating the protein kinase C-ζ-nuclear factor-κB signaling pathway in prostate cancer cells. Oncotarget. 8:74263–74275. 2017. View Article : Google Scholar : PubMed/NCBI

60 

Zhu P, Baek SH, Bourk EM, Ohgi KA, Garcia-Bassets I, Sanjo H, Akira S, Kotol PF, Glass CK, Rosenfeld MG and Rose DW: Macrophage/cancer cell interactions mediate hormone resistance by a nuclear receptor derepression pathway. Cell. 124:615–629. 2006. View Article : Google Scholar : PubMed/NCBI

61 

Chen G, Huang AC, Zhang W, Zhang G, Wu M, Xu W, Yu Z, Yang J, Wang B, Sun H, et al: Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature. 560:382–386. 2018. View Article : Google Scholar : PubMed/NCBI

62 

Winograd-Katz SE, Fässler R, Geiger B and Legate KR: The integrin adhesome: From genes and proteins to human disease. Nat Rev Mol Cell Biol. 15:273–288. 2014. View Article : Google Scholar : PubMed/NCBI

63 

Eke I, Dickreuter E and Cordes N: Enhanced radiosensitivity of head and neck squamous cell carcinoma cells by β1 integrin inhibition. Radiother Oncol. 104:235–242. 2012. View Article : Google Scholar : PubMed/NCBI

64 

Wu XQ, Dai Y, Yang Y, Huang C, Meng XM, Wu BM and Li J: Emerging role of microRNAs in regulating macrophage activation and polarization in immune response and inflammation. Immunology. 148:237–248. 2016. View Article : Google Scholar : PubMed/NCBI

65 

Ouimet M, Ediriweera HN, Gundra UM, Sheedy FJ, Ramkhelawon B, Hutchison SB, Rinehold K, van Solingen C, Fullerton MD, Cecchini K, et al: MicroRNA-33-dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis. J Clin Invest. 125:4334–4348. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

October 2019
Volume 42 Issue 4

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Tu, Y., Wu, Z., Tan, B., Yang, A., & Fang, Z. (2019). Emodin: Its role in prostate cancer‑associated inflammation (Review). Oncology Reports, 42, 1259-1271. https://doi.org/10.3892/or.2019.7264
MLA
Tu, Y., Wu, Z., Tan, B., Yang, A., Fang, Z."Emodin: Its role in prostate cancer‑associated inflammation (Review)". Oncology Reports 42.4 (2019): 1259-1271.
Chicago
Tu, Y., Wu, Z., Tan, B., Yang, A., Fang, Z."Emodin: Its role in prostate cancer‑associated inflammation (Review)". Oncology Reports 42, no. 4 (2019): 1259-1271. https://doi.org/10.3892/or.2019.7264