Identification of a long non‑coding RNA‑mediated competitive endogenous RNA network in hepatocellular carcinoma

  • Authors:
    • Hui He
    • Di Chen
    • Shimeng Cui
    • Hailong Piao
    • Haibo Tang
    • Xun Wang
    • Peng Ye
    • Shi Jin
  • View Affiliations

  • Published online on: June 3, 2019     https://doi.org/10.3892/or.2019.7181
  • Pages: 745-752
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The present study was designed to identify the endogenous RNA regulatory networks involved in hepatocellular carcinoma (HCC) by bioinformatic analysis. Both miRNA interaction network‑based correlation analysis and expression‑based Spearman correlation coefficients were utilized to identify potential mRNA‑lncRNA interactions. Then, a competitive endogenous (ce)RNA network was constructed from these interactions, and network topology and Gene Ontology enrichment analyses were conducted to mine potential functions of ceRNAs. In HCC samples, a ceRNA network was constructed. It was composed of 35,657 edges connecting 113 lncRNAs and 6,136 mRNAs which were differentially expressed in HCC and normal liver tissues. Meanwhile, a number of significantly positively correlated mRNA and lncRNA pairs in this ceRNA network were found to be consistently positively correlated in another independent dataset. To be noted, further analyses on the potential roles of ceRNAs demonstrated than various lncRNAs such as LINC00657, TUG1 and SNHG1 may play key roles in HCC by regulating protein phosphorylation or cell cycle pathways or influencing miRNAs. From the perspective that lncRNAs can function as ceRNAs, this study revealed that the interaction between lncRNAs, miRNAs and mRNAs may provide new insight for the diagnosis and treatment in the tumorigenesis of hepatocellular carcinoma.

References

1 

Shimizu M, Tanaka T and Moriwaki H: Obesity and hepatocellular carcinoma: Targeting obesity-related inflammation for chemoprevention of liver carcinogenesis. Semin Immunopathol. 35:191–202. 2013. View Article : Google Scholar : PubMed/NCBI

2 

Sakai H, Shirakami Y and Shimizu M: Chemoprevention of obesity-related liver carcinogenesis using pharmaceutical and nutraceutical agents. World J Gastroenterol. 22:394–406. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Dhanasekaran R, Limaye A and Cabrera R: Hepatocellular carcinoma: Current trends in worldwide epidemiology, risk factors, diagnosis, and therapeutics. Hepat Med. 4:19–37. 2012.PubMed/NCBI

4 

Farazi TA, Spitzer JI, Morozov P and Tuschl T: miRNAs in human cancer. J Pathol. 223:102–115. 2011. View Article : Google Scholar : PubMed/NCBI

5 

Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK, Munson G, Young G, Lucas AB, Ach R, Bruhn L, et al: lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature. 477:295–300. 2011. View Article : Google Scholar : PubMed/NCBI

6 

Ponting CP, Oliver PL and Reik W: Evolution and functions of long noncoding RNAs. Cell. 136:629–641. 2009. View Article : Google Scholar : PubMed/NCBI

7 

Calin GA, Liu CG, Ferracin M, Hyslop T, Spizzo R, Sevignani C, Fabbri M, Cimmino A, Lee EJ, Wojcik SE, et al: Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas. Cancer Cell. 12:215–229. 2007. View Article : Google Scholar : PubMed/NCBI

8 

Wilusz JE, Sunwoo H and Spector DL: Long noncoding RNAs: Functional surprises from the RNA world. Genes Dev. 23:1494–1504. 2009. View Article : Google Scholar : PubMed/NCBI

9 

Arvey A, Larsson E, Sander C, Leslie CS and Marks DS: Target mRNA abundance dilutes microRNA and siRNA activity. Mol Syst Biol. 6:3632010. View Article : Google Scholar : PubMed/NCBI

10 

Ebert MS and Sharp PA: Emerging roles for natural microRNA sponges. Curr Biol. 20:R858–R861. 2010. View Article : Google Scholar : PubMed/NCBI

11 

Wang P, Ning S, Zhang Y, Li R, Ye J, Zhao Z, Zhi H, Wang T, Guo Z and Li X: Identification of lncRNA-associated competing triplets reveals global patterns and prognostic markers for cancer. Nucleic Acids Res. 43:3478–3489. 2015. View Article : Google Scholar : PubMed/NCBI

12 

Cao Y, Wang P, Ning S, Xiao W, Xiao B and Li X: Identification of prognostic biomarkers in glioblastoma using a long non-coding RNA-mediated, competitive endogenous RNA network. Oncotarget. 7:41737–41747. 2016. View Article : Google Scholar : PubMed/NCBI

13 

Wang J, Liu X, Wu H, Ni P, Gu Z, Qiao Y, Chen N, Sun F and Fan Q: CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res. 38:5366–5383. 2010. View Article : Google Scholar : PubMed/NCBI

14 

Wang P, Zhi H, Zhang Y, Liu Y, Zhang J, Gao Y, Guo M, Ning S and Li X: miRSponge: A manually curated database for experimentally supported miRNA sponges and ceRNAs. Database. 2015(pii): bav0982015. View Article : Google Scholar : PubMed/NCBI

15 

Xu J, Li Y, Lu J, Pan T, Ding N, Wang Z, Shao T, Zhang J, Wang L and Li X: The mRNA related ceRNA-ceRNA landscape and significance across 20 major cancer types. Nucleic Acids Res. 43:8169–8182. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Giza DE, Vasilescu C and Calin GA: MicroRNAs and ceRNAs: Therapeutic implications of RNA networks. Expert Opin Biol Ther. 14:1285–1293. 2014. View Article : Google Scholar : PubMed/NCBI

17 

Liu K, Yan Z, Li Y and Sun Z: Linc2GO: A human lincRNA function annotation resource based on ceRNA hypothesis. Bioinformatics. 29:2221–2222. 2013. View Article : Google Scholar : PubMed/NCBI

18 

Das S, Ghosal S, Sen R and Chakrabarti J: lnCeDB: Database of human long noncoding RNA acting as competing endogenous RNA. PLoS One. 9:e989652014. View Article : Google Scholar : PubMed/NCBI

19 

Zheng T, Chou J, Zhang F, Liu Y, Ni H, Li X, Zheng L, Tang T, Jin L and Xi T: CXCR4 3′UTR functions as a ceRNA in promoting metastasis, proliferation and survival of MCF-7 cells by regulating miR-146a activity. Eur J Cell Biol. 94:458–469. 2015. View Article : Google Scholar : PubMed/NCBI

20 

Zhang K, Li Q, Kang X, Wang Y and Wang S: Identification and functional characterization of lncRNAs acting as ceRNA involved in the malignant progression of glioblastoma multiforme. Oncol Rep. 36:2911–2925. 2016. View Article : Google Scholar : PubMed/NCBI

21 

Wei C, Luo T, Zou S, Zhou X, Shen W, Ji X, Li Q and Wu A: Differentially expressed lncRNAs and miRNAs with associated ceRNA networks in aged mice with postoperative cognitive dysfunction. Oncotarget. 8:55901–55914. 2017. View Article : Google Scholar : PubMed/NCBI

22 

Kersey PJ, Lawson D, Birney E, Derwent PS, Haimel M, Herrero J, Keenan S, Kerhornou A, Koscielny G, Kähäri A, et al: Ensembl Genomes: Extending Ensembl across the taxonomic space. Nucleic Acids Res. 38:D563–D569. 2010. View Article : Google Scholar : PubMed/NCBI

23 

Schulze K, Imbeaud S, Letouzé E, Alexandrov LB, Calderaro J, Rebouissou S, Couchy G, Meiller C, Shinde J, Soysouvanh F, et al: Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat Genet. 47:505–511. 2015. View Article : Google Scholar : PubMed/NCBI

24 

Huang da W, Sherman BT and Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 4:44–57. 2009. View Article : Google Scholar : PubMed/NCBI

25 

Hofmann E, Muller J and Schuknecht B: Glomus tumor? Aberrant internal carotid artery. Radiologe. 30:555–556. 1990.(In German). PubMed/NCBI

26 

Koshland DE Jr: Health care: More access and more cures. Science. 262:14951993. View Article : Google Scholar : PubMed/NCBI

27 

Pang EY, Bai AH, To KF, Sy SM, Wong NL, Lai PB, Squire JA and Wong N: Identification of PFTAIRE protein kinase 1, a novel cell division cycle-2 related gene, in the motile phenotype of hepatocellular carcinoma cells. Hepatology. 46:436–445. 2007. View Article : Google Scholar : PubMed/NCBI

28 

Xu X, Jiang C, Wang S, Tai Y, Wang T, Kang L, Fan Z, Li S, Li L, Fu J, et al: HPIP is upregulated in liver cancer and promotes hepatoma cell proliferation via activation of G2/M transition. IUBMB Life. 65:873–882. 2013.PubMed/NCBI

29 

Yan H, Li Z, Shen Q, Wang Q, Tian J, Jiang Q and Gao L: Aberrant expression of cell cycle and material metabolism related genes contributes to hepatocellular carcinoma occurrence. Pathol Res Pract. 213:316–321. 2017. View Article : Google Scholar : PubMed/NCBI

30 

Yasuda E, Kumada T, Takai S, Ishisaki A, Noda T, Matsushima-Nishiwaki R, Yoshimi N, Kato K, Toyoda H, Kaneoka Y, et al: Attenuated phosphorylation of heat shock protein 27 correlates with tumor progression in patients with hepatocellular carcinoma. Biochem Biophys Res Commun. 337:337–342. 2005. View Article : Google Scholar : PubMed/NCBI

31 

Zhang M, Wang W, Li T, Yu X, Zhu Y, Ding F, Li D and Yang T: Long noncoding RNA SNHG1 predicts a poor prognosis and promotes hepatocellular carcinoma tumorigenesis. Biomed Pharmacother. 80:73–79. 2016. View Article : Google Scholar : PubMed/NCBI

32 

Tay Y, Rinn J and Pandolfi PP: The multilayered complexity of ceRNA crosstalk and competition. Nature. 505:344–352. 2014. View Article : Google Scholar : PubMed/NCBI

33 

Ebert MS, Neilson JR and Sharp PA: MicroRNA sponges: Competitive inhibitors of small RNAs in mammalian cells. Nat Methods. 4:721–726. 2007. View Article : Google Scholar : PubMed/NCBI

34 

Tang G and Tang X: Short tandem target mimic: A long journey to the engineered molecular landmine for selective destruction/blockage of microRNAs in plants and animals. J Genet Genomics. 40:291–296. 2013. View Article : Google Scholar : PubMed/NCBI

35 

Tang G, Yan J, Gu Y, Qiao M, Fan R, Mao Y and Tang X: Construction of short tandem target mimic (STTM) to block the functions of plant and animal microRNAs. Methods. 58:118–125. 2012. View Article : Google Scholar : PubMed/NCBI

36 

Wei Y, Chang Z, Wu C, Zhu Y, Li K and Xu Y: Identification of potential cancer-related pseudogenes in lung adenocarcinoma based on ceRNA hypothesis. Oncotarget. 8:59036–59047. 2017. View Article : Google Scholar : PubMed/NCBI

37 

Wu H, Wu R, Chen M, Li D, Dai J, Zhang Y, Gao K, Yu J, Hu G, Guo Y, et al: Comprehensive analysis of differentially expressed profiles of lncRNAs and construction of miR-133b mediated ceRNA network in colorectal cancer. Oncotarget. 8:21095–21105. 2017.PubMed/NCBI

38 

Su X, Xing J, Wang Z, Chen L, Cui M and Jiang B: microRNAs and ceRNAs: RNA networks in pathogenesis of cancer. Chin J Cancer Res. 25:235–239. 2013.PubMed/NCBI

39 

Shi X, Sun M, Liu H, Yao Y and Song Y: Long non-coding RNAs: A new frontier in the study of human diseases. Cancer Lett. 339:159–166. 2013. View Article : Google Scholar : PubMed/NCBI

40 

Li Y, Chen D, Gao X, Li X and Shi G: LncRNA NEAT1 regulates cell viability and invasion in esophageal squamous cell carcinoma through the miR-129/CTBP2 axis. Dis Markers. 2017:53146492017. View Article : Google Scholar : PubMed/NCBI

41 

Wang J, Cao L, Wu J and Wang Q: Long non-coding RNA SNHG1 regulates NOB1 expression by sponging miR-326 and promotes tumorigenesis in osteosarcoma. Int J Oncol. 52:77–88. 2018.PubMed/NCBI

42 

Liu H, Li J, Koirala P, Ding X, Chen B, Wang Y, Wang Z, Wang C, Zhang X and Mo YY: Long non-coding RNAs as prognostic markers in human breast cancer. Oncotarget. 7:20584–20596. 2016.PubMed/NCBI

43 

Li Z, Shen J, Chan MT and Wu WK: TUG1: A pivotal oncogenic long non-coding RNA of human cancers. Cell Prolif. 49:471–475. 2016. View Article : Google Scholar : PubMed/NCBI

44 

Huang MD, Chen WM, Qi FZ, Sun M, Xu TP, Ma P and Shu YQ: Long non-coding RNA TUG1 is up-regulated in hepatocellular carcinoma and promotes cell growth and apoptosis by epigenetically silencing of KLF2. Mol Cancer. 14:1652015. View Article : Google Scholar : PubMed/NCBI

45 

Sunamura N, Ohira T, Kataoka M, Inaoka D, Tanabe H, Nakayama Y, Oshimura M and Kugoh H: Regulation of functional KCNQ1OT1 lncRNA by β-catenin. Sci Rep. 6:206902016. View Article : Google Scholar : PubMed/NCBI

46 

Zhang Z, Weaver DL, Olsen D, deKay J, Peng Z, Ashikaga T and Evans MF: Long non-coding RNA chromogenic in situ hybridisation signal pattern correlation with breast tumour pathology. J Clin Pathol. 69:76–81. 2016. View Article : Google Scholar : PubMed/NCBI

47 

Wan J, Huang M, Zhao H, Wang C, Zhao X, Jiang X, Bian S, He Y and Gao Y: A novel tetranucleotide repeat polymorphism within KCNQ1OT1 confers risk for hepatocellular carcinoma. DNA Cell Biol. 32:628–634. 2013. View Article : Google Scholar : PubMed/NCBI

48 

Kim J, Abdelmohsen K, Yang X, De S, Grammatikakis I, Noh JH and Gorospe M: LncRNA OIP5-AS1/cyrano sponges RNA-binding protein HuR. Nucleic Acids Res. 44:2378–2392. 2016. View Article : Google Scholar : PubMed/NCBI

49 

Yang N, Chen J, Zhang H, Wang X, Yao H, Peng Y and Zhang W: LncRNA OIP5-AS1 loss-induced microRNA-410 accumulation regulates cell proliferation and apoptosis by targeting KLF10 via activating PTEN/PI3K/AKT pathway in multiple myeloma. Cell Death Dis. 8:e29752017. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

August 2019
Volume 42 Issue 2

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
He, H., Chen, D., Cui, S., Piao, H., Tang, H., Wang, X. ... Jin, S. (2019). Identification of a long non‑coding RNA‑mediated competitive endogenous RNA network in hepatocellular carcinoma. Oncology Reports, 42, 745-752. https://doi.org/10.3892/or.2019.7181
MLA
He, H., Chen, D., Cui, S., Piao, H., Tang, H., Wang, X., Ye, P., Jin, S."Identification of a long non‑coding RNA‑mediated competitive endogenous RNA network in hepatocellular carcinoma". Oncology Reports 42.2 (2019): 745-752.
Chicago
He, H., Chen, D., Cui, S., Piao, H., Tang, H., Wang, X., Ye, P., Jin, S."Identification of a long non‑coding RNA‑mediated competitive endogenous RNA network in hepatocellular carcinoma". Oncology Reports 42, no. 2 (2019): 745-752. https://doi.org/10.3892/or.2019.7181