Open Access

Comprehensive evaluation of FKBP10 expression and its prognostic potential in gastric cancer

  • Authors:
    • Liang Liang
    • Kun Zhao
    • Jin‑Hui Zhu
    • Gang Chen
    • Xin‑Gan Qin
    • Jun‑Qiang Chen
  • View Affiliations

  • Published online on: June 11, 2019     https://doi.org/10.3892/or.2019.7195
  • Pages: 615-628
  • Copyright: © Liang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

FK506 binding protein 10 (FKBP10) has been reported to be dysregulated in numerous types of cancer; however, few reports have investigated FKBP10 in gastric cancer (GC). The aim of the present study was to investigate FKBP10 expression in GC and to analyze its association with the prognosis of patients with GC. FKBP10 mRNA expression was evaluated using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The standardized mean differences of the meta‑analysis were comprehensively evaluated for FKBP10 expression from a series of GEO datasets. Kaplan‑Meier survival and Cox regression analyses were applied to predict the prognostic value of FKBP10 in patients with GC. Additionally, the protein expression levels of FKBP10 were validated by immunohistochemistry (IHC) in 40 GC and adjacent tissues. FKBP10 co‑expression network and bioinformatics analyses were then used to explore the potential functional mechanisms of FKBP10. The results revealed that the mRNA expression levels of FKBP10 were significantly increased in GC within the TCGA and GEO databases. Survival analysis revealed that high FKBP10 expression results in poorer overall survival and disease‑free survival (P<0.05). Multivariate cox regression analysis indicate FKBP10 as a dependent prognostic factor. The results of IHC indicated that the protein expression levels of FKBP10 were higher in GC tissues than in adjacent non‑GC tissues (P<0.001). Co‑expression networks and functional enrichment analysis suggested that FKBP10 may be involved in the development of GC via cell adhesion molecules and extracellular matrix‑receptor interaction pathways. Therefore, the findings of the present study indicated that FKBP10 is upregulated in GC tissues, and suggests its potential prognostic value. Therefore FKBP10 may be a potential therapeutic target for the treatment of GC.

References

1 

Correa P: Gastric cancer: Overview. Gastroenterol Clin North Am. 42:211–217. 2013. View Article : Google Scholar : PubMed/NCBI

2 

Tsukanov VV, Butorin NN, Maady AS, Shtygasheva OV, Amelchugova OS, Tonkikh JL, Fassan M and Rugge M: Helicobacter pylori infection, intestinal metaplasia, and gastric cancer risk in Eastern Siberia. Helicobacter. 16:107–112. 2011. View Article : Google Scholar : PubMed/NCBI

3 

Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China, 2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI

4 

Song Z, Wu Y, Yang J, Yang D and Fang X: Progress in the treatment of advanced gastric cancer. Tumour Biol. 39:10104283177146262017. View Article : Google Scholar : PubMed/NCBI

5 

Sitarz R, Skierucha M, Mielko J, Offerhaus GJA, Maciejewski R and Polkowski WP: Gastric cancer: Epidemiology, prevention, classification, and treatment. Cancer Manag Res. 10:239–248. 2018. View Article : Google Scholar : PubMed/NCBI

6 

Japanese Gastric Cancer Association: Japanese gastric cancer treatment guidelines 2014 (ver. 4). Gastric Cancer. 20:1–19. 2017. View Article : Google Scholar

7 

Chon SH, Berlth F, Plum PS, Herbold T, Alakus H, Kleinert R, Moenig SP, Bruns CJ, Hoelscher AH and Meyer HJ: Gastric cancer treatment in the world: Germany. Transl Gastroenterol Hepatol. 2:532017. View Article : Google Scholar : PubMed/NCBI

8 

Kang CB, Hong Y, Dhe-Paganon S and Yoon HS: FKBP family proteins: Immunophilins with versatile biological functions. Neurosignals. 16:318–325. 2008. View Article : Google Scholar : PubMed/NCBI

9 

Coss MC, Winterstein D, Sowder RC II and Simek SL: Molecular cloning, DNA sequence analysis, and biochemical characterization of a novel 65-kDa FK506-binding protein (FKBP65). J Biol Chem. 270:29336–29341. 1995. View Article : Google Scholar : PubMed/NCBI

10 

Patterson CE, Schaub T, Coleman EJ and Davis EC: Developmental regulation of FKBP65. An ER-localized extracellular matrix binding-protein. Mol Biol Cell. 11:3925–3935. 2000. View Article : Google Scholar : PubMed/NCBI

11 

Ishikawa Y, Vranka J, Wirz J, Nagata K and Bachinger HP: The rough endoplasmic reticulum-resident FK506-binding protein FKBP65 is a molecular chaperone that interacts with collagens. J Biol Chem. 283:31584–31590. 2008. View Article : Google Scholar : PubMed/NCBI

12 

Staab-Weijnitz CA, Fernandez IE, Knüppel L, Maul J, Heinzelmann K, Juan-Guardela BM, Hennen E, Preissler G, Winter H, Neurohr C, et al: FK506-binding protein 10, a potential novel drug target for idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 192:455–467. 2015. View Article : Google Scholar : PubMed/NCBI

13 

Knüppel L, Heinzelmann K, Lindner M, Hatz R, Behr J, Eickelberg O and Staab-Weijnitz CA: FK506-binding protein 10 (FKBP10) regulates lung fibroblast migration via collagen VI synthesis. Respir Res. 19:672018. View Article : Google Scholar : PubMed/NCBI

14 

Solassol J, Mange A and Maudelonde T: FKBP family proteins as promising new biomarkers for cancer. Curr Opin Pharmacol. 11:320–325. 2011. View Article : Google Scholar : PubMed/NCBI

15 

Yao YL, Liang YC, Huang HH and Yang WM: FKBPs in chromatin modification and cancer. Curr Opin Pharmacol. 11:301–307. 2011. View Article : Google Scholar : PubMed/NCBI

16 

Quinn MC, Wojnarowicz PM, Pickett A, Provencher DM, Mes-Masson AM, Davis EC and Tonin PN: FKBP10/FKBP65 expression in high-grade ovarian serous carcinoma and its association with patient outcome. Int J Oncol. 42:912–920. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Henriksen R, Sørensen FB, Ørntoft TF and Birkenkamp-Demtroder K: Expression of FK506 binding protein 65 (FKBP65) is decreased in epithelial ovarian cancer cells compared to benign tumor cells and to ovarian epithelium. Tumour Biol. 32:671–676. 2011. View Article : Google Scholar : PubMed/NCBI

18 

Ramadori G, Konstantinidou G, Venkateswaran N, Biscotti T, Morlock L, Galié M, Williams NS, Luchetti M, Santinelli A, Scaglioni PP and Coppari R: Diet-induced unresolved ER stress hinders KRAS-driven lung tumorigenesis. Cell Metab. 21:117–125. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Paulo P, Ribeiro FR, Santos J, Mesquita D, Almeida M, Barros-Silva JD, Itkonen H, Henrique R, Jerónimo C, Sveen A, et al: Molecular subtyping of primary prostate cancer reveals specific and shared target genes of different ETS rearrangements. Neoplasia. 14:600–611. 2012. View Article : Google Scholar : PubMed/NCBI

20 

Sun Z, Dong J, Zhang S, Hu Z, Cheng K, Li K, Xu B, Ye M, Nie Y, Fan D and Zou H: Identification of chemoresistance-related cell-surface glycoproteins in leukemia cells and functional validation of candidate glycoproteins. J Proteome Res. 13:1593–1601. 2014. View Article : Google Scholar : PubMed/NCBI

21 

Ge Y, Xu A, Zhang M, Xiong H, Fang L, Zhang X, Liu C and Wu S: FK506 binding protein 10 is overexpressed and promotes renal cell carcinoma. Urol Int. 98:169–176. 2017. View Article : Google Scholar : PubMed/NCBI

22 

Olesen SH, Christensen LL, Sørensen FB, Cabezón T, Laurberg S, Orntoft TF and Birkenkamp-Demtröder K: Human FK506 binding protein 65 is associated with colorectal cancer. Mol Cell Proteomics. 4:534–544. 2005. View Article : Google Scholar : PubMed/NCBI

23 

Wu JG, Wang JJ, Jiang X, Lan JP, He XJ, Wang HJ, Ma YY, Xia YJ, Ru GQ, Ma J, et al: MiR-125b promotes cell migration and invasion by targeting PPP1CA-Rb signal pathways in gastric cancer, resulting in a poor prognosis. Gastric Cancer. 18:729–739. 2015. View Article : Google Scholar : PubMed/NCBI

24 

Imaoka H, Toiyama Y, Okigami M, Yasuda H, Saigusa S, Ohi M, Tanaka K, Inoue Y, Mohri Y and Kusunoki M: Circulating microRNA-203 predicts metastases, early recurrence, and poor prognosis in human gastric cancer. Gastric Cancer. 19:744–753. 2016. View Article : Google Scholar : PubMed/NCBI

25 

Liang M, Shi B, Liu J, He L, Yi G, Zhou L, Yu G and Zhou X: Downregulation of miR203 induces overexpression of PIK3CA and predicts poor prognosis of gastric cancer patients. Drug Des Devel Ther. 9:3607–3616. 2015.PubMed/NCBI

26 

Leek JT, Johnson WE, Parker HS, Fertig EJ, Jaffe AE, Storey JD, Zhang Y and Torres LC: sva: Surrogate variable analysis. R package version 3.32.1. 2019.

27 

Huang WY, Hsu SD, Huang HY, Sun YM, Chou CH, Weng SL and Huang HD: MethHC: A database of DNA methylation and gene expression in human cancer. Nucleic Acids Res. 43:D856–D861. 2015. View Article : Google Scholar : PubMed/NCBI

28 

Tang Z, Li C, Kang B, Gao G, Li C and Zhang Z: GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 45:W98–W102. 2017. View Article : Google Scholar : PubMed/NCBI

29 

Szász AM, Lánczky A, Nagy Á, Förster S, Hark K, Green JE, Boussioutas A, Busuttil R, Szabó A and Győrffy B: Cross-validation of survival associated biomarkers in gastric cancer using transcriptomic data of 1,065 patients. Oncotarget. 7:49322–49333. 2016. View Article : Google Scholar : PubMed/NCBI

30 

Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C, Sjöstedt E, Asplund A, et al: Proteomics. Tissue-based map of the human proteome. Science. 347:12604192015. View Article : Google Scholar : PubMed/NCBI

31 

Yang S, Kim CY, Hwang S, Kim E, Kim H, Shim H and Lee I: COEXPEDIA: Exploring biomedical hypotheses via co-expressions associated with medical subject headings (MeSH). Nucleic Acids Res. 45:D389–D396. 2017. View Article : Google Scholar : PubMed/NCBI

32 

Romano S, D'Angelillo A and Romano MF: Pleiotropic roles in cancer biology for multifaceted proteins FKBPs. Biochim Biophys Acta. 1850:2061–2068. 2015. View Article : Google Scholar : PubMed/NCBI

33 

Christiansen HE, Schwarze U, Pyott SM, AlSwaid A, Al Balwi M, Alrasheed S, Pepin MG, Weis MA, Eyre DR and Byers PH: Homozygosity for a missense mutation in SERPINH1, which encodes the collagen chaperone protein HSP47, results in severe recessive osteogenesis imperfecta. Am J Hum Genet. 86:389–398. 2010. View Article : Google Scholar : PubMed/NCBI

34 

Essawi O, Symoens S, Fannana M, Darwish M, Farraj M, Willaert A, Essawi T, Callewaert B, De Paepe A, Malfait F and Coucke PJ: Genetic analysis of osteogenesis imperfecta in the Palestinian population: Molecular screening of 49 affected families. Mol Genet Genomic Med. 6:15–26. 2018. View Article : Google Scholar : PubMed/NCBI

35 

Chen Y, Terajima M, Banerjee P, Guo H, Liu X, Yu J, Yamauchi M and Kurie JM: FKBP65-dependent peptidyl-prolyl isomerase activity potentiates the lysyl hydroxylase 2-driven collagen cross-link switch. Sci Rep. 7:460212017. View Article : Google Scholar : PubMed/NCBI

36 

Gjaltema RA, van der Stoel MM, Boersema M and Bank RA: Disentangling mechanisms involved in collagen pyridinoline cross-linking: The immunophilin FKBP65 is critical for dimerization of lysyl hydroxylase 2. Proc Natl Acad Sci USA. 113:7142–7147. 2016. View Article : Google Scholar : PubMed/NCBI

37 

Duran I, Martin JH, Weis MA, Krejci P, Konik P, Li B, Alanay Y, Lietman C, Lee B, Eyre D, et al: A chaperone complex formed by HSP47, FKBP65, and BiP modulates telopeptide Lysyl hydroxylation of type I procollagen. J Bone Miner Res. 32:1309–1319. 2017. View Article : Google Scholar : PubMed/NCBI

38 

Vollmann EH, Cao L, Amatucci A, Reynolds T, Hamann S, Dalkilic-Liddle I, Cameron TO, Hossbach M, Kauffman KJ, Mir FF, et al: Identification of novel fibrosis modifiers by in vivo siRNA silencing. Mol Ther Nucleic Acids. 7:314–323. 2017. View Article : Google Scholar : PubMed/NCBI

39 

Hagedorn M, Siegfried G, Hooks KB and Khatib AM: Integration of zebrafish fin regeneration genes with expression data of human tumors in silico uncovers potential novel melanoma markers. Oncotarget. 7:71567–71579. 2016. View Article : Google Scholar : PubMed/NCBI

40 

Rahim S, Minas T, Hong SH, Justvig S, Celik H, Kont YS, Han J, Kallarakal AT, Kong Y, Rudek MA, et al: A small molecule inhibitor of ETV1, YK-4-279, prevents prostate cancer growth and metastasis in a mouse xenograft model. PLoS One. 9:e1142602014. View Article : Google Scholar : PubMed/NCBI

41 

Heard ME, Besio R, Weis M, Rai J, Hudson DM, Dimori M, Zimmerman SM, Kamykowski JA, Hogue WR, Swain FL, et al: Sc65-Null mice provide evidence for a novel endoplasmic reticulum complex regulating collagen Lysyl hydroxylation. PLoS Genet. 12:e10060022016. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

August 2019
Volume 42 Issue 2

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Liang, L., Zhao, K., Zhu, J., Chen, G., Qin, X., & Chen, J. (2019). Comprehensive evaluation of FKBP10 expression and its prognostic potential in gastric cancer. Oncology Reports, 42, 615-628. https://doi.org/10.3892/or.2019.7195
MLA
Liang, L., Zhao, K., Zhu, J., Chen, G., Qin, X., Chen, J."Comprehensive evaluation of FKBP10 expression and its prognostic potential in gastric cancer". Oncology Reports 42.2 (2019): 615-628.
Chicago
Liang, L., Zhao, K., Zhu, J., Chen, G., Qin, X., Chen, J."Comprehensive evaluation of FKBP10 expression and its prognostic potential in gastric cancer". Oncology Reports 42, no. 2 (2019): 615-628. https://doi.org/10.3892/or.2019.7195