Open Access

Epithelial membrane protein 1 promotes glioblastoma progression through the PI3K/AKT/mTOR signaling pathway

  • Authors:
    • Lifeng Miao
    • Zheng Jiang
    • Jiwei Wang
    • Ning Yang
    • Qichao Qi
    • Wenjing Zhou
    • Zichao Feng
    • Wenjie Li
    • Qing Zhang
    • Bin Huang
    • Anjing Chen
    • Di Zhang
    • Peng Zhao
    • Xingang Li
  • View Affiliations

  • Published online on: June 19, 2019     https://doi.org/10.3892/or.2019.7204
  • Pages: 605-614
  • Copyright: © Miao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Glioblastoma multiforme (GBM) is the most malignant intracranial tumor. Although the affected patients are usually treated with surgery combined with radiotherapy and chemotherapy, the median survival time for GBM patients is still approximately 12‑14 months. Identifying the key molecular mechanisms and targets of GBM development may therefore lead to the development of improved therapies for GBM patients. In the present study, the clinical significance and potential function of epithelial membrane protein 1 (EMP1) in malignant gliomas were investigated. Increased EMP1 expression was associated with increasing tumor grade (P<0.001) and worse prognosis in patients (P<0.001) based on TCGA, Rembrandt and CGGA databases for human gliomas. In vitro, gene silencing of EMP1 in U87MG and P3 GBM (primary glioma) cells significantly inhibited tumor proliferation and invasion. In addition, it was revealed that activation of the PI3K/AKT/mTOR signaling pathway is the driving force of EMP1‑promoted glioma progression. Finally, it was demonstrated, using an intracranial GBM animal model, that EMP1 knockdown significantly inhibits tumor growth in vivo and increases overall survival in tumor‑bearing animals. Our research provides new insights into the molecular mechanisms underlying EMP1 knockdown‑mediated inhibition of GBM cell invasion and raises the possibility that targeting of EMP1 may represent a promising strategy for the treatment of GBM.

References

1 

Ricard D, Idbaih A, Ducray F, Lahutte M, Hoang-Xuan K and Delattre JY: Primary brain tumours in adults. Lancet. 379:1984–1996. 2012. View Article : Google Scholar : PubMed/NCBI

2 

Kalpathy-Cramer J, Gerstner ER, Emblem KE, Andronesi OC and Rosen B: Advanced magnetic resonance imaging of the physical processes in human glioblastoma. Cancer Res. 74:4622–4637. 2014. View Article : Google Scholar : PubMed/NCBI

3 

van den Bent M, Chinot OL and Cairncross JG: Recent developments in the molecular characterization and treatment of oligodendroglial tumors. Neuro Oncol. 5:128–138. 2003. View Article : Google Scholar : PubMed/NCBI

4 

Garrido W, Rocha JD, Jaramillo C, Fernandez K, Oyarzun C, San Martin R and Quezada C: Chemoresistance in high-grade gliomas: Relevance of adenosine signalling in stem-like cells of glioblastoma multiforme. Curr Drug Targets. 15:931–942. 2014.PubMed/NCBI

5 

Lee CY: Strategies of temozolomide in future glioblastoma treatment. Onco Targets Ther. 10:265–270. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Uribe D, Torres A, Rocha JD, Niechi I, Oyarzún C, Sobrevia L, San Martín R and Quezada C: Multidrug resistance in glioblastoma stem-like cells: Role of the hypoxic microenvironment and adenosine signaling. Mol Aspects Med. 55:140–151. 2017. View Article : Google Scholar : PubMed/NCBI

7 

Bangsow T, Baumann E, Bangsow C, Jaeger MH, Pelzer B, Gruhn P, Wolf S, von Melchner H and Stanimirovic DB: The epithelial membrane protein 1 is a novel tight junction protein of the blood-brain barrier. J Cereb Blood Flow Metab. 28:1249–1260. 2008. View Article : Google Scholar : PubMed/NCBI

8 

Aries IM, Jerchel IS, van den Dungen RE, van den Berk LC, Boer JM, Horstmann MA, Escherich G, Pieters R and den Boer ML: EMP1, a novel poor prognostic factor in pediatric leukemia regulates prednisolone resistance, cell proliferation, migration and adhesion. Leukemia. 28:1828–1837. 2014. View Article : Google Scholar : PubMed/NCBI

9 

Sun G, Zhao G, Lu Y, Wang Y and Yang C: Association of EMP1 with gastric carcinoma invasion, survival and prognosis. Int J Oncol. 45:1091–1098. 2014. View Article : Google Scholar : PubMed/NCBI

10 

Bredel M, Bredel C, Juric D, Harsh GR, Vogel H, Recht LD and Sikic BI: Functional network analysis reveals extended gliomagenesis pathway maps and three novel MYC-interacting genes in human gliomas. Cancer Res. 65:8679–8689. 2005. View Article : Google Scholar : PubMed/NCBI

11 

Wang J, Qi Q, Feng Z, Zhang X, Huang B, Chen A, Prestegarden L, Li X and Wang J: Berberine induces autophagy in glioblastoma by targeting the AMPK/mTOR/ULK1-pathway. Oncotarget. 7:66944–66958. 2016.PubMed/NCBI

12 

Fack F, Espedal H, Keunen O, Golebiewska A, Obad N, Harter PN, Mittelbronn M, Bähr O, Weyerbrock A, Stuhr L, et al: Bevacizumab treatment induces metabolic adaptation toward anaerobic metabolism in glioblastomas. Acta Neuropathol. 129:115–131. 2015. View Article : Google Scholar : PubMed/NCBI

13 

Fack F, Tardito S, Hochart G, Oudin A, Zheng L, Fritah S, Golebiewska A, Nazarov PV, Bernard A, Hau AC, et al: Altered metabolic landscape in IDH-mutant gliomas affects phospholipid, energy, and oxidative stress pathways. EMBO Mol Med. 9:1681–1695. 2017. View Article : Google Scholar : PubMed/NCBI

14 

Tardito S, Oudin A, Ahmed SU, Fack F, Keunen O, Zheng L, Miletic H, Sakariassen PØ, Weinstock A, Wagner A, et al: Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma. Nat Cell Biol. 17:1556–1568. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Rajesh Y, Pal I, Banik P, Chakraborty S, Borkar SA, Dey G, Mukherjee A and Mandal M: Insights into molecular therapy of glioma: Current challenges and next generation blueprint. Acta Pharmacol Sin. 38:591–613. 2017. View Article : Google Scholar : PubMed/NCBI

16 

Hsieh YH, Hsieh SC, Lee CH, Yang SF, Cheng CW, Tang MJ, Lin CL, Lin CL and Chou RH: Targeting EMP3 suppresses proliferation and invasion of hepatocellular carcinoma cells through inactivation of PI3K/Akt pathway. Oncotarget. 6:34859–34874. 2015. View Article : Google Scholar : PubMed/NCBI

17 

Lai S, Wang G, Cao X, Li Z, Hu J and Wang J: EMP-1 promotes tumorigenesis of NSCLC through PI3K/AKT pathway. J Huazhong Univ Sci Technolog Med Sci. 32:834–838. 2012. View Article : Google Scholar : PubMed/NCBI

18 

Wang HT, Kong JP, Ding F, Wang XQ, Wang MR, Liu LX, Wu M and Liu ZH: Analysis of gene expression profile induced by EMP-1 in esophageal cancer cells using cDNA Microarray. World J Gastroenterol. 9:392–398. 2003. View Article : Google Scholar : PubMed/NCBI

19 

Wang YW, Cheng HL, Ding YR, Chou LH and Chow NH: EMP1, EMP 2, and EMP3 as novel therapeutic targets in human cancer. Biochim Biophys Acta. 1868:199–211. 2017.

20 

Ramnarain DB, Park S, Lee DY, Hatanpaa KJ, Scoggin SO, Otu H, Libermann TA, Raisanen JM, Ashfaq R, Wong ET, et al: Differential gene expression analysis reveals generation of an autocrine loop by a mutant epidermal growth factor receptor in glioma cells. Cancer Res. 66:867–874. 2006. View Article : Google Scholar : PubMed/NCBI

21 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

22 

Sun GG, Lu YF, Fu ZZ, Cheng YJ and Hu WN: EMP1 inhibits nasopharyngeal cancer cell growth and metastasis through induction apoptosis and angiogenesis. Tumour Biol. 35:3185–3193. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Manning BD and Toker A: AKT/PKB signaling: Navigating the network. Cell. 169:381–405. 2017. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

August 2019
Volume 42 Issue 2

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Miao, L., Jiang, Z., Wang, J., Yang, N., Qi, Q., Zhou, W. ... Li, X. (2019). Epithelial membrane protein 1 promotes glioblastoma progression through the PI3K/AKT/mTOR signaling pathway. Oncology Reports, 42, 605-614. https://doi.org/10.3892/or.2019.7204
MLA
Miao, L., Jiang, Z., Wang, J., Yang, N., Qi, Q., Zhou, W., Feng, Z., Li, W., Zhang, Q., Huang, B., Chen, A., Zhang, D., Zhao, P., Li, X."Epithelial membrane protein 1 promotes glioblastoma progression through the PI3K/AKT/mTOR signaling pathway". Oncology Reports 42.2 (2019): 605-614.
Chicago
Miao, L., Jiang, Z., Wang, J., Yang, N., Qi, Q., Zhou, W., Feng, Z., Li, W., Zhang, Q., Huang, B., Chen, A., Zhang, D., Zhao, P., Li, X."Epithelial membrane protein 1 promotes glioblastoma progression through the PI3K/AKT/mTOR signaling pathway". Oncology Reports 42, no. 2 (2019): 605-614. https://doi.org/10.3892/or.2019.7204