Open Access

Tumor‑infiltrating M2 macrophages driven by specific genomic alterations are associated with prognosis in bladder cancer

  • Authors:
    • Yongping Xue
    • Liping Tong
    • Fei LiuAnwei Liu
    • Anwei Liu
    • Shuxiong Zeng
    • Qiao Xiong
    • Zeyu Yang
    • Xing He
    • Yinghao Sun
    • Chuanliang Xu
  • View Affiliations

  • Published online on: June 12, 2019     https://doi.org/10.3892/or.2019.7196
  • Pages: 581-594
  • Copyright: © Xue et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The present study aimed to explore the mechanism by which the immune landscape of the tumor microenvironment influences bladder cancer. CIBERSORT and ssGSEA analyses revealed that M2 macrophages accounted for the highest proportion from 22 subsets of tumor‑infiltrating immune cells and were enriched in higher histologic grade and higher pathologic stage bladder cancer and ‘basal’ subtype of muscle invasive bladder cancer (MIBC). Kaplan‑Meier survival curve analysis indicated that patients with high numbers of infiltrating M2 macrophages had worse overall and disease‑specific survival rates. RNA sequencing and immunohistochemistry results indicated that M2 macrophages were enriched in MIBC and promoted angiogenesis. M2 macrophage infiltration was higher in bladder cancer tissues with mutant TP53, RB transcriptional corepressor 1, phosphatidylinositol‑4,5‑bisphosphate 3‑kinase catalytic subunit α, lysine methyltransferase 2A, lysine demethylase 6A and apolipoprotein B mRNA editing enzyme catalytic‑polypeptide‑like, but lower in tissues with mutant fibroblast growth factor receptor 3 (FGFR3), E74‑like ETS transcription factor 3, PC4 and SFRS1 interacting protein 1 and transmembrane and coiled‑coil domains 4. In addition, M2 macrophage infiltration was lower in the tissues with amplified FGFR3, erb‑b2 receptor tyrosine kinase 2, BCL2‑like 1, telomerase reverse transcriptase and tyrosine‑3‑monooxygenase/tryptophan‑5‑monooxygenase activation protein ζ, as well as in the tissues with deleted cyclin‑dependent kinase inhibitor 2A, CREB binding protein, AT‑rich interaction domain 1A, fragile histidine triad diadenosine triphosphatase, phosphodiesterase 4D, RAD51 paralog B, nuclear receptor corepressor 1 and protein tyrosine phosphatase receptor type D. Finally, seven micro (mi) RNAs (miR‑214‑5p, miR‑223‑3p, miR‑155‑5p, miR‑199a‑3p, miR‑199b‑3P, miR‑146b‑5p, miR‑142‑5p) which were expressed differentially in at least three mutant genes and were positively correlated with M2 macrophage infiltration as well as expressed highly in high grade bladder cancer were identified. Overall, the present study concluded that M2 macrophages are the predominant tumor‑infiltrating immune cell in bladder cancer and differentially expressed miRNAs due to cancer‑specific genomic alterations may be important drivers of M2 macrophage infiltration. These findings suggested that M2 macrophage infiltration may serve as a potential immunotherapy target in bladder cancer.

References

1 

Sanli O, Dobruch J, Knowles MA, Burger M, Alemozaffar M, Nielsen ME and Lotan Y: Bladder cancer. Nat Rev Dis Primers. 3:170222017. View Article : Google Scholar : PubMed/NCBI

2 

Babjuk M, Böhle A, Burger M, Capoun O, Cohen D, Compérat EM, Hernández V, Kaasinen E, Palou J, Rouprêt M, et al: EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder: Update 2016. Eur Urol. 71:447–461. 2017. View Article : Google Scholar : PubMed/NCBI

3 

Robertson AG, Kim J, Al-Ahmadie H, Bellmunt J, Guo G, Cherniack AD, Hinoue T, Laird PW, Hoadley KA, Akbani R, et al: Comprehensive molecular characterization of muscle-invasive bladder cancer. Cell. 171:540–556.e25. 2017. View Article : Google Scholar : PubMed/NCBI

4 

Sjödahl G, Lauss M, Lövgren K, Chebil G, Gudjonsson S, Veerla S, Patschan O, Aine M, Fernö M, Ringnér M, et al: A molecular taxonomy for urothelial carcinoma. Clin Cancer Res. 18:3377–3386. 2012. View Article : Google Scholar : PubMed/NCBI

5 

Choi W, Porten S, Kim S, Willis D, Plimack ER, Hoffman-Censits J, Roth B, Cheng T, Tran M, Lee IL, et al: Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell. 25:152–165. 2014. View Article : Google Scholar : PubMed/NCBI

6 

Zhang H, Ye YL, Li MX, Ye SB, Huang WR, Cai TT, He J, Peng JY, Duan TH, Cui J, et al: CXCL2/MIF-CXCR2 signaling promotes the recruitment of myeloid-derived suppressor cells and is correlated with prognosis in bladder cancer. Oncogene. 36:2095–2104. 2017. View Article : Google Scholar : PubMed/NCBI

7 

Kitamura T, Qian BZ and Pollard JW: Immune cell promotion of metastasis. Nat Rev Immunol. 15:73–86. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Şenbabaoğlu Y, Gejman RS, Winer AG, Liu M, Van Allen EM, de Velasco G, Miao D, Ostrovnaya I, Drill E, Luna A, et al: Tumor immune microenvironment characterization in clear cell renal cell carcinoma identifies prognostic and immunotherapeutically relevant messenger RNA signatures. Genome Biol. 17:2312016. View Article : Google Scholar : PubMed/NCBI

9 

Wang N, Liang H and Zen K: Molecular mechanisms that influence the macrophage m1-m2 polarization balance. Front Immunol. 5:6142014. View Article : Google Scholar : PubMed/NCBI

10 

Qian BZ and Pollard JW: Macrophage diversity enhances tumor progression and metastasis. Cell. 141:39–51. 2010. View Article : Google Scholar : PubMed/NCBI

11 

Na YR, Yoon YN, Son DI and Seok SH: Cyclooxygenase-2 inhibition blocks M2 macrophage differentiation and suppresses metastasis in murine breast cancer model. PLoS One. 8:e634512013. View Article : Google Scholar : PubMed/NCBI

12 

Ruffell B and Coussens LM: Macrophages and therapeutic resistance in cancer. Cancer Cell. 27:462–472. 2015. View Article : Google Scholar : PubMed/NCBI

13 

Korpal M, Puyang X, Jeremy Wu Z, Seiler R, Furman C, Oo HZ, Seiler M, Irwin S, Subramanian V, Julie Joshi J, et al: Evasion of immunosurveillance by genomic alterations of PPARγ/RXRα in bladder cancer. Nat Commun. 8:1032017. View Article : Google Scholar : PubMed/NCBI

14 

Sjödahl G, Lövgren K, Lauss M, Chebil G, Patschan O, Gudjonsson S, Månsson W, Fernö M, Leandersson K, Lindgren D, et al: Infiltration of CD3+ and CD68+ cells in bladder cancer is subtype specific and affects the outcome of patients with muscle-invasive tumors. Urol Oncol. 32:791–797. 2014. View Article : Google Scholar : PubMed/NCBI

15 

Miyake M, Tatsumi Y, Gotoh D, Ohnishi S, Owari T, Iida K, Ohnishi K, Hori S, Morizawa Y, Itami Y, et al: Regulatory T cells and tumor-associated macrophages in the tumor microenvironment in non-muscle invasive bladder cancer treated with intravesical Bacille Calmette-Guérin: A long-term follow-up study of a Japanese Cohort. Int J Mol Sci. 18(pii): E21862017. View Article : Google Scholar : PubMed/NCBI

16 

Bindea G, Mlecnik B, Tosolini M, Kirilovsky A, Waldner M, Obenauf AC, Angell H, Fredriksen T, Lafontaine L, Berger A, et al: Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity. 39:782–795. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Sanyal R, Polyak MJ, Zuccolo J, Puri M, Deng L, Roberts L, Zuba A, Storek J, Luider JM, Sundberg EM, et al: MS4A4A: A novel cell surface marker for M2 macrophages and plasma cells. Immunol Cell Biol. 95:611–619. 2017. View Article : Google Scholar : PubMed/NCBI

18 

Ambarus CA, Krausz S, van Eijk M, Hamann J, Radstake TR, Reedquist KA, Tak PP and Baeten DL: Systematic validation of specific phenotypic markers for in vitro polarized human macrophages. J Immunol Methods. 375:196–206. 2012. View Article : Google Scholar : PubMed/NCBI

19 

Lugo-Villarino G, Troegeler A, Balboa L, Lastrucci C, Duval C, Mercier I, Bénard A, Capilla F, Al Saati T, Poincloux R, et al: The C-type lectin receptor DC-SIGN has an anti-inflammatory role in human M(IL-4) macrophages in response to Mycobacterium tuberculosis. Front Immunol. 9:11232018. View Article : Google Scholar : PubMed/NCBI

20 

Choi JW, Kwon MJ, Kim IH, Kim YM, Lee MK and Nam TJ: Pyropia yezoensis glycoprotein promotes the M1 to M2 macrophage phenotypic switch via the STAT3 and STAT6 transcription factors. Int J Mol Med. 38:666–674. 2016. View Article : Google Scholar : PubMed/NCBI

21 

Liu M, Yang W, Liu S, Hock D, Zhang B, Huo RY, Tong X and Yan H: LXRα is expressed at higher levels in healthy people compared to atherosclerosis patients and its over-expression polarizes macrophages towards an anti-inflammatory MΦ2 phenotype. Clin Exp Hypertens. 40:213–217. 2018. View Article : Google Scholar : PubMed/NCBI

22 

Lo TH, Silveira PA, Fromm PD, Verma ND, Vu PA, Kupresanin F, Adam R, Kato M, Cogger VC, Clark GJ and Hart DN: Characterization of the expression and function of the C-type lectin receptor CD302 in mice and humans reveals a role in dendritic cell migration. J Immunol. 197:885–898. 2016. View Article : Google Scholar : PubMed/NCBI

23 

Bellora F, Castriconi R, Dondero A, Reggiardo G, Moretta L, Mantovani A, Moretta A and Bottino C: The interaction of human natural killer cells with either unpolarized or polarized macrophages results in different functional outcomes. Proc Natl Acad Sci USA. 107:21659–21664. 2010. View Article : Google Scholar : PubMed/NCBI

24 

Ornstein MC, Diaz-Montero CM, Rayman P, Elson P, Haywood S, Finke JH, Kim JS, Pavicic PG Jr, Lamenza M, Devonshire S, et al: Myeloid-derived suppressors cells (MDSC) correlate with clinicopathologic factors and pathologic complete response (pCR) in patients with urothelial carcinoma (UC) undergoing cystectomy. Urol Oncol. 36:405–412. 2018. View Article : Google Scholar : PubMed/NCBI

25 

Gielen PR, Schulte BM, Kers-Rebel ED, Verrijp K, Petersen-Baltussen HM, ter Laan M, Wesseling P and Adema GJ: Increase in both CD14-positive and CD15-positive myeloid-derived suppressor cell subpopulations in the blood of patients with glioma but predominance of CD15-positive myeloid-derived suppressor cells in glioma tissue. J Neuropathol Exp Neurol. 74:390–400. 2015. View Article : Google Scholar : PubMed/NCBI

26 

Reich M, Liefeld T, Gould J, Lerner J, Tamayo P and Mesirov JP: GenePattern 2.0. Nat Genet. 38:500–501. 2006. View Article : Google Scholar : PubMed/NCBI

27 

Gentles AJ, Newman AM, Liu CL, Bratman SV, Feng W, Kim D, Nair VS, Xu Y, Khuong A, Hoang CD, et al: The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med. 21:938–945. 2015. View Article : Google Scholar : PubMed/NCBI

28 

Zeng S, Yu X, Ma C, Song R, Zhang Z, Zi X, Chen X, Wang Y, Yu Y, Zhao J, et al: Transcriptome sequencing identifies ANLN as a promising prognostic biomarker in bladder urothelial carcinoma. Sci Rep. 7:31512017. View Article : Google Scholar : PubMed/NCBI

29 

Chai CY, Chen WT, Hung WC, Kang WY, Huang YC, Su YC and Yang CH: Hypoxia-inducible factor-1alpha expression correlates with focal macrophage infiltration, angiogenesis and unfavourable prognosis in urothelial carcinoma. J Clin Pathol. 61:658–664. 2008. View Article : Google Scholar : PubMed/NCBI

30 

Cancer Genome Atlas Research Network, . Comprehensive molecular characterization of urothelial bladder carcinoma. Nature. 507:315–322. 2014. View Article : Google Scholar : PubMed/NCBI

31 

Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, et al: Molecular portraits of human breast tumours. Nature. 406:747–752. 2000. View Article : Google Scholar : PubMed/NCBI

32 

An Y, Adams JR, Hollern DP, Zhao A, Chang SG, Gams MS, Chung PED, He X, Jangra R, Shah JS, et al: Cdh1 and Pik3ca mutations cooperate to induce immune-related invasive lobular carcinoma of the breast. Cell Rep. 25:702–714.e6. 2018. View Article : Google Scholar : PubMed/NCBI

33 

Hanada T, Nakagawa M, Emoto A, Nomura T, Nasu N and Nomura Y: Prognostic value of tumor-associated macrophage count in human bladder cancer. Int J Urol. 7:263–269. 2000. View Article : Google Scholar : PubMed/NCBI

34 

Ayari C, LaRue H, Hovington H, Decobert M, Harel F, Bergeron A, Têtu B, Lacombe L and Fradet Y: Bladder tumor infiltrating mature dendritic cells and macrophages as predictors of response to bacillus Calmette-Guérin immunotherapy. Eur Urol. 55:1386–1395. 2009. View Article : Google Scholar : PubMed/NCBI

35 

Takayama H, Nishimura K, Tsujimura A, Nakai Y, Nakayama M, Aozasa K, Okuyama A and Nonomura N: Increased infiltration of tumor associated macrophages is associated with poor prognosis of bladder carcinoma in situ after intravesical bacillus Calmette-Guerin instillation. J Urol. 181:1894–1900. 2009. View Article : Google Scholar : PubMed/NCBI

36 

Tervahartiala M, Taimen P, Mirtti T, Koskinen I, Ecke T, Jalkanen S and Boström PJ: Immunological tumor status may predict response to neoadjuvant chemotherapy and outcome after radical cystectomy in bladder cancer. Sci Rep. 7:126822017. View Article : Google Scholar : PubMed/NCBI

37 

Wang X, Ni S, Chen Q, Ma L, Jiao Z, Wang C and Jia G: Bladder cancer cells induce immunosuppression of T cells by supporting PD-L1 expression in tumour macrophages partially through interleukin 10. Cell Biol Int. 41:177–186. 2017. View Article : Google Scholar : PubMed/NCBI

38 

Wu SQ, Xu R, Li XF, Zhao XK and Qian BZ: Prognostic roles of tumor associated macrophages in bladder cancer: A system review and meta-analysis. Oncotarget. 9:25294–25303. 2018. View Article : Google Scholar : PubMed/NCBI

39 

Maniecki MB, Etzerodt A, Ulhøi BP, Steiniche T, Borre M, Dyrskjøt L, Orntoft TF, Moestrup SK and Møller HJ: Tumor-promoting macrophages induce the expression of the macrophage-specific receptor CD163 in malignant cells. Int J Cancer. 131:2320–2331. 2012. View Article : Google Scholar : PubMed/NCBI

40 

Aljabery F, Olsson H, Gimm O, Jahnson S and Shabo I: M2-macrophage infiltration and macrophage traits of tumor cells in urinary bladder cancer. Urol Oncol. 36:159.e19–159.e26. 2018. View Article : Google Scholar

41 

Fu H, Zhu Y, Wang Y, Liu Z, Zhang J, Xie H, Fu Q, Dai B, Ye D and Xu J: Identification and validation of stromal immunotype predict survival and benefit from adjuvant chemotherapy in patients with muscle-invasive bladder cancer. Clin Cancer Res. 24:3069–3078. 2018. View Article : Google Scholar : PubMed/NCBI

42 

Rubio C, Munera-Maravilla E, Lodewijk I, Suarez-Cabrera C, Karaivanova V, Ruiz-Palomares R, Paramio JM and Dueñas M: Macrophage polarization as a novel weapon in conditioning tumor microenvironment for bladder cancer: Can we turn demons into gods? Clin Transl Oncol. 21:391–403. 2019. View Article : Google Scholar : PubMed/NCBI

43 

Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF, Olson OC, Quick ML, Huse JT, Teijeiro V, et al: CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med. 19:1264–1272. 2013. View Article : Google Scholar : PubMed/NCBI

44 

Zhu Y, Knolhoff BL, Meyer MA, Nywening TM, West BL, Luo J, Wang-Gillam A, Goedegebuure SP, Linehan DC and DeNardo DG: CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 74:5057–5069. 2014. View Article : Google Scholar : PubMed/NCBI

45 

Sica A and Mantovani A: Macrophage plasticity and polarization: In vivo veritas. J Clin Invest. 122:787–795. 2012. View Article : Google Scholar : PubMed/NCBI

46 

Bronte V and Murray PJ: Understanding local macrophage phenotypes in disease: Modulating macrophage function to treat cancer. Nat Med. 21:117–119. 2015. View Article : Google Scholar : PubMed/NCBI

47 

Wang Q, Hu B, Hu X, Kim H, Squatrito M, Scarpace L, deCarvalho AC, Lyu S, Li P, Li Y, et al: Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell. 32:42–56.e6. 2017. View Article : Google Scholar : PubMed/NCBI

48 

Rutledge WC, Kong J, Gao J, Gutman DA, Cooper LA, Appin C, Park Y, Scarpace L, Mikkelsen T, Cohen ML, et al: Tumor-infiltrating lymphocytes in glioblastoma are associated with specific genomic alterations and related to transcriptional class. Clin Cancer Res. 19:4951–4960. 2013. View Article : Google Scholar : PubMed/NCBI

49 

Lin EY, Nguyen AV, Russell RG and Pollard JW: Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med. 193:727–740. 2001. View Article : Google Scholar : PubMed/NCBI

50 

Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, Kaiser EA, Snyder LA and Pollard JW: CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature. 475:222–225. 2011. View Article : Google Scholar : PubMed/NCBI

51 

Cortez-Retamozo V, Etzrodt M, Newton A, Ryan R, Pucci F, Sio SW, Kuswanto W, Rauch PJ, Chudnovskiy A, Iwamoto Y, et al: Angiotensin II drives the production of tumor-promoting macrophages. Immunity. 38:296–308. 2013. View Article : Google Scholar : PubMed/NCBI

52 

Ying W, Tseng A, Chang RC, Morin A, Brehm T, Triff K, Nair V, Zhuang G, Song H, Kanameni S, et al: MicroRNA-223 is a crucial mediator of PPARγ-regulated alternative macrophage activation. J Clin Invest. 125:4149–4159. 2015. View Article : Google Scholar : PubMed/NCBI

53 

He X, Tang R, Sun Y, Wang YG, Zhen KY, Zhang DM and Pan WQ: MicroR-146 blocks the activation of M1 macrophage by targeting signal transducer and activator of transcription 1 in hepatic schistosomiasis. EBioMedicine. 13:339–347. 2016. View Article : Google Scholar : PubMed/NCBI

54 

Liu Y, Gu Y and Cao X: The exosomes in tumor immunity. Oncoimmunology. 4:e10274722015. View Article : Google Scholar : PubMed/NCBI

55 

Cooks T, Pateras IS, Jenkins LM, Patel KM, Robles AI, Morris J, Forshew T, Appella E, Gorgoulis VG and Harris CC: Mutant p53 cancers reprogram macrophages to tumor supporting macrophages via exosomal miR-1246. Nat Commun. 9:7712018. View Article : Google Scholar : PubMed/NCBI

56 

Junker K, Heinzelmann J, Beckham C, Ochiya T and Jenster G: Extracellular vesicles and their role in urologic malignancies. Eur Urol. 70:323–331. 2016. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

August 2019
Volume 42 Issue 2

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Xue, Y., Tong, L., LiuAnwei Liu, F., Liu, A., Zeng, S., Xiong, Q. ... Xu, C. (2019). Tumor‑infiltrating M2 macrophages driven by specific genomic alterations are associated with prognosis in bladder cancer. Oncology Reports, 42, 581-594. https://doi.org/10.3892/or.2019.7196
MLA
Xue, Y., Tong, L., LiuAnwei Liu, F., Liu, A., Zeng, S., Xiong, Q., Yang, Z., He, X., Sun, Y., Xu, C."Tumor‑infiltrating M2 macrophages driven by specific genomic alterations are associated with prognosis in bladder cancer". Oncology Reports 42.2 (2019): 581-594.
Chicago
Xue, Y., Tong, L., LiuAnwei Liu, F., Liu, A., Zeng, S., Xiong, Q., Yang, Z., He, X., Sun, Y., Xu, C."Tumor‑infiltrating M2 macrophages driven by specific genomic alterations are associated with prognosis in bladder cancer". Oncology Reports 42, no. 2 (2019): 581-594. https://doi.org/10.3892/or.2019.7196