Open Access

Identification of microRNAs associated with the aggressiveness of prolactin pituitary tumors using bioinformatic analysis

  • Authors:
    • Zihao Wang
    • Lu Gao
    • Xiaopeng Guo
    • Chenzhe Feng
    • Kan Deng
    • Wei Lian
    • Bing Xing
  • View Affiliations

  • Published online on: May 28, 2019     https://doi.org/10.3892/or.2019.7173
  • Pages: 533-548
  • Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Aggressive prolactin pituitary tumors, which exhibit aggressive behaviors and resistance to conventional treatments, are a huge challenge for neurosurgeons. Many studies have investigated the roles of microRNAs (miRNAs) in pituitary tumorigenesis, invasion and metastasis, but few have explored aggressiveness‑associated miRNAs in aggressive pituitary tumors. Differentially expressed miRNAs (DEMs) between aggressive and nonaggressive prolactin pituitary tumors were screened using the GSE46294 miRNA expression profile downloaded from the GEO database. The potential target genes of the top three most highly upregulated and downregulated DEMs were predicted by miRTarBase, and potential functional annotation and pathway enrichment analysis were performed using the DAVID database. Protein‑protein interaction (PPI) and miRNA‑hub gene interaction networks were constructed by Cytoscape software. A total of 43 DEMs were identified, including 19 upregulated and 24 downregulated miRNAs, between aggressive and nonaggressive prolactin pituitary tumors. One hundred and seventy and 680 target genes were predicted for the top three most highly upregulated and downregulated miRNAs, respectively, and these genes were involved in functional enrichment pathways, such as regulation of transcription from RNA polymerase II promoter, DNA‑templated transcription, Wnt signaling pathway, protein binding, and transcription factor activity (sequence‑specific DNA binding). In the PPI network, the top 10 genes with the highest degree of connectivity of the upregulated and downregulated DEMs were selected as hub genes. By constructing an miRNA‑hub gene network, it was found that most hub genes were potentially modulated by hsa‑miR‑489 and hsa‑miR‑520b. Targeting hsa‑miR‑489 and hsa‑miR‑520b may provide new clues for the diagnosis and treatment of aggressive prolactin pituitary tumors.

References

1 

Kaltsas GA, Nomikos P, Kontogeorgos G, Buchfelder M and Grossman AB: Clinical review: Diagnosis and management of pituitary carcinomas. J Clin Endocrinol Metab. 90:3089–3099. 2005. View Article : Google Scholar : PubMed/NCBI

2 

Fernandez A, Karavitaki N and Wass JA: Prevalence of pituitary adenomas: A community-based, cross-sectional study in Banbury (Oxfordshire, UK). Clin Endocrinol (Oxf). 72:377–382. 2010. View Article : Google Scholar : PubMed/NCBI

3 

Dai C, Feng M, Liu X, Ma S, Sun B, Bao X, Yao Y, Deng K, Wang Y, Xing B, et al: Refractory pituitary adenoma: A novel classification for pituitary tumors. Oncotarget. 7:83657–83668. 2016. View Article : Google Scholar : PubMed/NCBI

4 

Raverot G, Burman P, McCormack A, Heaney A, Petersenn S, Popovic V, Trouillas J and Dekkers OM; European Society of Endocrinology, : European society of endocrinology clinical practice guidelines for the management of aggressive pituitary tumours and carcinomas. Eur J Endocrinol. 178:G1–G24. 2018. View Article : Google Scholar : PubMed/NCBI

5 

Heaney A: Management of aggressive pituitary adenomas and pituitary carcinomas. J Neurooncol. 117:459–468. 2014. View Article : Google Scholar : PubMed/NCBI

6 

Lasolle H, Cortet C, Castinetti F, Cloix L, Caron P, Delemer B, Desailloud R, Jublanc C, Lebrun-Frenay C, Sadoul JL, et al: Temozolomide treatment can improve overall survival in aggressive pituitary tumors and pituitary carcinomas. Eur J Endocrinol. 176:769–777. 2017. View Article : Google Scholar : PubMed/NCBI

7 

Losa M, Bogazzi F, Cannavo S, Ceccato F, Curtò L, De Marinis L, Iacovazzo D, Lombardi G, Mantovani G, Mazza E, et al: Temozolomide therapy in patients with aggressive pituitary adenomas or carcinomas. J Neurooncol. 126:519–525. 2016. View Article : Google Scholar : PubMed/NCBI

8 

Shukla GC, Singh J and Barik S: MicroRNAs: Processing, maturation, target recognition and regulatory functions. Mol Cell Pharmacol. 3:83–92. 2011.PubMed/NCBI

9 

Treiber T, Treiber N and Meister G: Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol. 20:5–20. 2019. View Article : Google Scholar : PubMed/NCBI

10 

Croce CM and Calin GA: miRNAs, cancer, and stem cell division. Cell. 122:6–7. 2005. View Article : Google Scholar : PubMed/NCBI

11 

Berindan-Neagoe I, Monroig Pdel C, Pasculli B and Calin GA: MicroRNAome genome: A treasure for cancer diagnosis and therapy. CA Cancer J Clin. 64:311–336. 2014. View Article : Google Scholar : PubMed/NCBI

12 

Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, et al: MicroRNA expression profiles classify human cancers. Nature. 435:834–838. 2005. View Article : Google Scholar : PubMed/NCBI

13 

Feng Y, Mao ZG, Wang X, Du Q, Jian M, Zhu D, Xiao Z, Wang HJ and Zhu YH: MicroRNAs and target genes in pituitary adenomas. Horm Metab Res. 50:179–192. 2018. View Article : Google Scholar : PubMed/NCBI

14 

Di Ieva A, Butz H, Niamah M, Rotondo F, De Rosa S, Sav A, Yousef GM, Kovacs K and Cusimano MD: MicroRNAs as biomarkers in pituitary tumors. Neurosurgery. 75:181–189; discussion 188–189. 2014. View Article : Google Scholar : PubMed/NCBI

15 

Zhang QJ and Xu C: The role of microRNAs in the pathogenesis of pituitary tumors. Front Biosci (Landmark Ed). 21:1–7. 2016. View Article : Google Scholar : PubMed/NCBI

16 

Wei Z, Zhou C, Liu M, Yao Y, Sun J, Xiao J, Ma W, Zhu H and Wang R: MicroRNA involvement in a metastatic non-functioning pituitary carcinoma. Pituitary. 18:710–721. 2015. View Article : Google Scholar : PubMed/NCBI

17 

Roche M, Wierinckx A, Croze S, Rey C, Legras-Lachuer C, Morel AP, Fusco A, Raverot G, Trouillas J and Lachuer J: Deregulation of miR-183 and KIAA0101 in aggressive and malignant pituitary tumors. Front Med (Lausanne). 2:542015.PubMed/NCBI

18 

Edgar R, Domrachev M and Lash AE: Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30:207–210. 2002. View Article : Google Scholar : PubMed/NCBI

19 

Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, et al: NCBI GEO: Archive for functional genomics data sets-update. Nucleic Acids Res 41 (Database Issue). D991–D995. 2013.

20 

Chou CH, Shrestha S, Yang CD, Chang NW, Lin YL, Liao KW, Huang WC, Sun TH, Tu SJ, Lee WH, et al: miRTarBase update 2018: A resource for experimentally validated microRNA-target interactions. Nucleic Acids Res 46D. D296–D302. 2018. View Article : Google Scholar

21 

Huang da W, Sherman BT and Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 4:44–57. 2009. View Article : Google Scholar : PubMed/NCBI

22 

Kanehisa M, Furumichi M, Tanabe M, Sato Y and Morishima K: KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45D. D353–D361. 2017. View Article : Google Scholar

23 

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al: Gene ontology: Tool for the unification of biology. The gene ontology consortium. Nat Genet. 25:25–29. 2000. View Article : Google Scholar : PubMed/NCBI

24 

von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P and Snel B: STRING: A database of predicted functional associations between proteins. Nucleic Acids Res. 31:258–261. 2003. View Article : Google Scholar : PubMed/NCBI

25 

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13:2498–2504. 2003. View Article : Google Scholar : PubMed/NCBI

26 

Bandettini WP, Kellman P, Mancini C, Booker OJ, Vasu S, Leung SW, Wilson JR, Shanbhag SM, Chen MY and Arai AE: MultiContrast delayed enhancement (MCODE) improves detection of subendocardial myocardial infarction by late gadolinium enhancement cardiovascular magnetic resonance: A clinical validation study. J Cardiovasc Magn Reson. 14:832012. View Article : Google Scholar : PubMed/NCBI

27 

Maere S, Heymans K and Kuiper M: BiNGO: A cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics. 21:3448–3449. 2005. View Article : Google Scholar : PubMed/NCBI

28 

Dworakowska D and Grossman AB: The pathophysiology of pituitary adenomas. Best Pract Res Clin Endocrinol Metab. 23:525–541. 2009. View Article : Google Scholar : PubMed/NCBI

29 

Fukuoka H, Cooper O, Ben-Shlomo A, Mamelak A, Ren SG, Bruyette D and Melmed S: EGFR as a therapeutic target for human, canine, and mouse ACTH-secreting pituitary adenomas. J Clin Invest. 121:4712–4721. 2011. View Article : Google Scholar : PubMed/NCBI

30 

Fukuoka H, Cooper O, Mizutani J, Tong Y, Ren SG, Bannykh S and Melmed S: HER2/ErbB2 receptor signaling in rat and human prolactinoma cells: Strategy for targeted prolactinoma therapy. Mol Endocrinol. 25:92–103. 2011. View Article : Google Scholar : PubMed/NCBI

31 

Vlotides G, Siegel E, Donangelo I, Gutman S, Ren SG and Melmed S: Rat prolactinoma cell growth regulation by epidermal growth factor receptor ligands. Cancer Res. 68:6377–6386. 2008. View Article : Google Scholar : PubMed/NCBI

32 

Cooper O, Mamelak A, Bannykh S, Carmichael J, Bonert V, Lim S, Cook-Wiens G and Ben-Shlomo A: Prolactinoma ErbB receptor expression and targeted therapy for aggressive tumors. Endocrine. 46:318–327. 2014. View Article : Google Scholar : PubMed/NCBI

33 

Donovan LE, Arnal AV, Wang SH and Odia Y: Widely metastatic atypical pituitary adenoma with mTOR pathway STK11(F298L) mutation treated with everolimus therapy. CNS Oncol. 5:203–209. 2016. View Article : Google Scholar : PubMed/NCBI

34 

Ortiz LD, Syro LV, Scheithauer BW, Ersen A, Uribe H, Fadul CE, Rotondo F, Horvath E and Kovacs K: Anti-VEGF therapy in pituitary carcinoma. Pituitary. 15:445–449. 2012. View Article : Google Scholar : PubMed/NCBI

35 

D'Angelo D, Palmieri D, Mussnich P, Roche M, Wierinckx A, Raverot G, Fedele M, Croce CM, Trouillas J and Fusco A: Altered microRNA expression profile in human pituitary GH adenomas: Down-regulation of miRNA targeting HMGA1, HMGA2, and E2F1. J Clin Endocrinol Metab. 97:E1128–E1138. 2012. View Article : Google Scholar : PubMed/NCBI

36 

Mussnich P, Raverot G, Jaffrain-Rea ML, Fraggetta F, Wierinckx A, Trouillas J, Fusco A and D'Angelo D: Downregulation of miR-410 targeting the cyclin B1 gene plays a role in pituitary gonadotroph tumors. Cell Cycle. 14:2590–2597. 2015. View Article : Google Scholar : PubMed/NCBI

37 

Finotello F and Di Camillo B: Measuring differential gene expression with RNA-seq: Challenges and strategies for data analysis. Brief Funct Genomics. 14:130–142. 2015. View Article : Google Scholar : PubMed/NCBI

38 

Farhan M, Wang H, Gaur U, Little PJ, Xu J and Zheng W: FOXO signaling pathways as therapeutic targets in cancer. Int J Biol Sci. 13:815–827. 2017. View Article : Google Scholar : PubMed/NCBI

39 

Xu F, Zhang J, Hu G, Liu L and Liang W: Hypoxia and TGF-β1 induced PLOD2 expression improve the migration and invasion of cervical cancer cells by promoting epithelial-to-mesenchymal transition (EMT) and focal adhesion formation. Cancer Cell Int. 17:542017. View Article : Google Scholar : PubMed/NCBI

40 

Matano F, Yoshida D, Ishii Y, Tahara S, Teramoto A and Morita A: Endocan, a new invasion and angiogenesis marker of pituitary adenomas. J Neurooncol. 117:485–491. 2014. View Article : Google Scholar : PubMed/NCBI

41 

Cooper O, Vlotides G, Fukuoka H, Greene MI and Melmed S: Expression and function of ErbB receptors and ligands in the pituitary. Endocr Relat Cancer. 18:R197–R211. 2011. View Article : Google Scholar : PubMed/NCBI

42 

Lin Y, Liu J, Huang Y, Liu D, Zhang G and Kan H: microRNA-489 plays an anti-metastatic role in human hepatocellular carcinoma by targeting matrix metalloproteinase-7. Transl Oncol. 10:211–220. 2017. View Article : Google Scholar : PubMed/NCBI

43 

Zhang B, Ji S, Ma F, Ma Q, Lu X and Chen X: miR-489 acts as a tumor suppressor in human gastric cancer by targeting PROX1. Am J Cancer Res. 6:2021–2030. 2016.PubMed/NCBI

44 

Chai P, Tian J, Zhao D, Zhang H, Cui J, Ding K and Liu B: GSE1 negative regulation by miR-489-5p promotes breast cancer cell proliferation and invasion. Biochem Biophys Res Commun. 471:123–128. 2016. View Article : Google Scholar : PubMed/NCBI

45 

Xu D, Liu R, Meng L, Zhang Y, Lu G and Ma P: Long non-coding RNA ENST01108 promotes carcinogenesis of glioma by acting as a molecular sponge to modulate miR-489. Biomed Pharmacother. 100:20–28. 2018. View Article : Google Scholar : PubMed/NCBI

46 

Kikkawa N, Hanazawa T, Fujimura L, Nohata N, Suzuki H, Chazono H, Sakurai D, Horiguchi S, Okamoto Y and Seki N: miR-489 is a tumour-suppressive miRNA target PTPN11 in hypopharyngeal squamous cell carcinoma (HSCC). Br J Cancer. 103:877–884. 2010. View Article : Google Scholar : PubMed/NCBI

47 

Li J, Qu W, Jiang Y, Sun Y, Cheng Y, Zou T and Du S: miR-489 suppresses proliferation and invasion of human bladder cancer cells. Oncol Res. 24:391–398. 2016. View Article : Google Scholar : PubMed/NCBI

48 

Gao S, Liu H, Hou S, Wu L, Yang Z, Shen J, Zhou L, Zheng SS and Jiang B: miR-489 suppresses tumor growth and invasion by targeting HDAC7 in colorectal cancer. Clin Transl Oncol. 20:703–712. 2018. View Article : Google Scholar : PubMed/NCBI

49 

Xiao J, Li G, Zhou J, Wang S, Liu D, Shu G, Zhou J and Ren F: MicroRNA-520b functions as a tumor suppressor in colorectal cancer by inhibiting defective in cullin neddylation 1 domain containing 1 (DCUN1D1). Oncol Res. 26:593–604. 2018. View Article : Google Scholar : PubMed/NCBI

50 

Liu X, Wang F, Tian L, Wang T, Zhang W, Li B and Bai YA: MicroRNA-520b affects the proliferation of human glioblastoma cells by directly targeting cyclin D1. Tumour Biol. 37:7921–7928. 2016. View Article : Google Scholar : PubMed/NCBI

51 

Zhang W, Kong G, Zhang J, Wang T, Ye L and Zhang X: MicroRNA-520b inhibits growth of hepatoma cells by targeting MEKK2 and cyclin D1. PLoS One. 7:e314502012. View Article : Google Scholar : PubMed/NCBI

52 

Lu YC, Cheng AJ, Lee LY, You GR, Li YL, Chen HY and Chang JT: miR-520b as a novel molecular target for suppressing stemness phenotype of head-neck cancer by inhibiting CD44. Sci Rep. 7:20422017. View Article : Google Scholar : PubMed/NCBI

53 

Hu N, Zhang J, Cui W, Kong G, Zhang S, Yue L, Bai X, Zhang Z, Zhang W, Zhang X and Ye L: miR-520b regulates migration of breast cancer cells by targeting hepatitis B X-interacting protein and interleukin-8. J Biol Chem. 286:13714–13722. 2011. View Article : Google Scholar : PubMed/NCBI

54 

Jin K, Zhao W, Xie X, Pan Y, Wang K and Zhang H: miR-520b restrains cell growth by targeting HDAC4 in lung cancer. Thorac Cancer. 9:1249–1254. 2018. View Article : Google Scholar : PubMed/NCBI

55 

Li S, Zhang H, Ning T, Wang X, Liu R, Yang H, Han Y, Deng T, Zhou L, Zhang L, et al: miR-520b/e regulates proliferation and migration by simultaneously targeting EGFR in gastric cancer. Cell Physiol Biochem. 40:1303–1315. 2016. View Article : Google Scholar : PubMed/NCBI

56 

Liang S, Chen L, Huang H and Zhi D: The experimental study of miRNA in pituitary adenomas. Turk Neurosurg. 23:721–727. 2013.PubMed/NCBI

Related Articles

Journal Cover

August 2019
Volume 42 Issue 2

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Wang, Z., Gao, L., Guo, X., Feng, C., Deng, K., Lian, W., & Xing, B. (2019). Identification of microRNAs associated with the aggressiveness of prolactin pituitary tumors using bioinformatic analysis. Oncology Reports, 42, 533-548. https://doi.org/10.3892/or.2019.7173
MLA
Wang, Z., Gao, L., Guo, X., Feng, C., Deng, K., Lian, W., Xing, B."Identification of microRNAs associated with the aggressiveness of prolactin pituitary tumors using bioinformatic analysis". Oncology Reports 42.2 (2019): 533-548.
Chicago
Wang, Z., Gao, L., Guo, X., Feng, C., Deng, K., Lian, W., Xing, B."Identification of microRNAs associated with the aggressiveness of prolactin pituitary tumors using bioinformatic analysis". Oncology Reports 42, no. 2 (2019): 533-548. https://doi.org/10.3892/or.2019.7173