Open Access

Role of 4‑aminobutyrate aminotransferase (ABAT) and the lncRNA co‑expression network in the development of myelodysplastic syndrome

  • Authors:
    • Yanzhen Chen
    • Guangjie Zhao
    • Nianyi Li
    • Zhongguang Luo
    • Xiaoqin Wang
    • Jingwen Gu
  • View Affiliations

  • Published online on: May 29, 2019     https://doi.org/10.3892/or.2019.7175
  • Pages: 509-520
  • Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

IncRNAs play an important role in the regulation of gene expression. The present study profiled differentially expressed lncRNAs (DELs) and mRNAs (DEMs) in myelodysplastic syndrome (MDS) to construct a 4‑aminobutyrate aminotransferase (ABAT)‑DEL‑DEM co‑expression network in MDS development using the Agilent human BeadChips and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and network analyses. Compared with controls, there were 543 DELs and 2,705 DEMs in MDS patients, among which 285 (52.5%) DELs were downregulated and 258 (47.5%) DELs were upregulated, whereas 1,521 (56.2%) DEMs were downregulated and 1,184 (43.70%) DEMs were upregulated in MDS patients. The ABAT‑DEL‑DEM co‑expression network contained six DELs that were co‑expressed with ABAT in MDS. The GO analysis revealed that the co‑expression network mainly participated in response to organic cyclic compound, cell proliferation, cell part morphogenesis, regulation of cell proliferation and enzyme‑linked receptor protein signaling pathways, while the KEGG database showed that the co‑expression network was involved in various pathways, such as phagosome and metabolic pathways. Furthermore, the expression of a selected DEL (lncENST00000444102) and ABAT was shown to be significantly downregulated in MDS patients, and in SKM‑1 and THP‑1 cells. The selected lncENST00000444102 was then overexpressed and ABAT expression was knocked down in the MDS cell lines using lentiviral transfection. In addition, lncENST00000444102 overexpression reduced the viability and increased the apoptosis of MDS cells, ABAT expression was upregulated by lncENST00000444102.

References

1 

Germing U, Kobbe G, Haas R and Gattermann N: Myelodysplastic syndromes: Diagnosis, prognosis, and treatment. Dtsch Arztebl Int. 110:783–790. 2013.PubMed/NCBI

2 

Lindsley RC and Ebert BL: Molecular pathophysiology of myelodysplastic syndromes. Annu Rev Pathol. 8:21–47. 2013. View Article : Google Scholar : PubMed/NCBI

3 

Issa JP: The myelodysplastic syndrome as a prototypical epigenetic disease. Blood. 121:3811–3817. 2013. View Article : Google Scholar : PubMed/NCBI

4 

Glenthøj A, Ørskov AD, Hansen JW, Hadrup SR, O'Connell C and Grønbæk K: Immune mechanisms in myelodysplastic syndrome. Int J Mol Sci. 17:E9442016. View Article : Google Scholar : PubMed/NCBI

5 

Varney ME, Melgar K, Niederkorn M, Smith M, Barreyro L and Starczynowski DT: Deconstructing innate immune signaling in myelodysplastic syndromes. Exp Hematol. 43:587–598. 2015. View Article : Google Scholar : PubMed/NCBI

6 

Gañán-Gómez I, Wei Y, Starczynowski DT, Colla S, Yang H, Cabrero-Calvo M, Bohannan ZS, Verma A, Steidl U and Garcia-Manero G: Deregulation of innate immune and inflammatory signaling in myelodysplastic syndromes. Leukemia. 29:1458–1469. 2015. View Article : Google Scholar : PubMed/NCBI

7 

Jiang Y, Dunbar A, Gondek LP, Mohan S, Rataul M, O'Keefe C, Sekeres M, Saunthararajah Y and Maciejewski JP: Aberrant DNA methylation is a dominant mechanism in MDS progression to AML. Blood. 113:1315–1325. 2009. View Article : Google Scholar : PubMed/NCBI

8 

Zhao X, Yang F, Li S, Liu M, Ying S, Jia X and Wang X: CpG island methylator phenotype of myelodysplastic syndrome identified through genome-wide profiling of DNA methylation and gene expression. Br J Haematol. 165:649–658. 2014. View Article : Google Scholar : PubMed/NCBI

9 

Zhao G, Li N, Li S, Wu W, Wang X and Gu J: The high methylation of 4-aminobutyrate aminotransferase gene predicts a poor prognosis in patients with myelodysplastic syndrome. Int J Oncol. 54:491–504. 2019.PubMed/NCBI

10 

Medina-Kauwe LK, Tobin AJ, De Meirleir L, Jaeken J, Jakobs C, Nyhan WL and Gibson KM: 4-Aminobutyrate aminotransferase (GABA-transaminase) deficiency. J Inherit Metab Dis. 22:414–427. 1999. View Article : Google Scholar : PubMed/NCBI

11 

Jaeken J, Casaer P, de Cock P, Corbeel L, Eeckels R, Eggermont E, Schechter PJ and Brucher JM: Gamma-aminobutyric acid-transaminase deficiency: A newly recognized inborn error of neurotransmitter metabolism. Neuropediatrics. 15:165–169. 1084. View Article : Google Scholar

12 

Wegerer M, Adena S, Pfennig A, Czamara D, Sailer U, Bettecken T, Müller-Myhsok B, Modell S and Ising M: Variants within the GABA transaminase (ABAT) gene region are associated with somatosensory evoked EEG potentials in families at high risk for affective disorders. Psychol Med. 43:1207–1217. 2013. View Article : Google Scholar : PubMed/NCBI

13 

Maguire SE, Rhoades S, Chen WF, Sengupta A, Yue Z, Lim JC, Mitchell CH, Weljie AM and Sehgal A: Independent effects of γ-Aminobutyric acid transaminase (GABAT) on metabolic and sleep homeostasis. J Biol Chem. 290:20407–20416. 2015. View Article : Google Scholar : PubMed/NCBI

14 

Barnby G, Abbott A, Sykes N, Morris A, Weeks DE, Mott R, Lamb J, Bailey AJ and Monaco AP; International Molecular Genetics Study of Autism Consortium, : Candidate-gene screening and association analysis at the autism-susceptibility locus on chromosome 16p: Evidence of association at GRIN2A and ABAT. Am J Hum Genet. 76:950–966. 2005. View Article : Google Scholar : PubMed/NCBI

15 

Jirholt J, Asling B, Hammond P, Davidson G, Knutsson M, Walentinsson A, Jensen JM, Lehmann A, Agreus L and Lagerström-Fermer M: 4-Aminobutyrate aminotransferase (ABAT): Genetic and pharmacological evidence for an involvement in gastro esophageal reflux disease. PLos One. 6:E190952011. View Article : Google Scholar : PubMed/NCBI

16 

Budczies J, Brockmöller SF, Müller BM, Barupal DK, Richter-Ehrenstein C, Kleine-Tebbe A, Griffin JL, Orešič M, Dietel M, Denkert C and Fiehn O: Comparative metabolomics of estrogen receptor positive and estrogen receptor negative breast cancer: Alterations in glutamine and beta-alanine metabolism. J Proteomics. 94:279–288. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Jansen MP, Sas L, Sieuwerts AM, Van Cauwenberghe C, Ramirez-Ardila D, Look M, Ruigrok-Ritstier K, Finetti P, Bertucci F, Timmermans MM, et al: Decreased expression of ABAT and STC2 hallmarks ER-positive inflammatory breast cancer and endocrine therapy resistance in advanced disease. Mol Oncol. 9:1218–1233. 2015. View Article : Google Scholar : PubMed/NCBI

18 

Ma L, Bajic VB and Zhang Z: On the classification of long non-coding RNAs. RNA Biol. 10:925–933. 2013. View Article : Google Scholar : PubMed/NCBI

19 

Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, Stadler PF, Hertel J, Hackermuller J, Hofacker IL, et al: RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science. 316:1484–1488. 2007. View Article : Google Scholar : PubMed/NCBI

20 

Rodríguez-Malavé NI and Rao DS: Long noncoding RNAs in hematopoietic malignancies. Brief Funct Genomics. 15:227–238. 2016. View Article : Google Scholar : PubMed/NCBI

21 

Benetatos L, Hatzimichael E, Dasoula A, Dranitsaris G, Tsiara S, Syrrou M, Georgiou I and Bourantas KL: CpG methylation analysis of the MEG3 and SNRPN imprinted genes in acute myeloid leukemia and myelodysplastic syndromes. Leuk Res. 34:148–153. 2010. View Article : Google Scholar : PubMed/NCBI

22 

Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, Harris NL, Le Beau MM, Hellstrom-Lindberg E, Tefferi A and Bloomfield CD: The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: Rationale and important changes. Blood. 114:937–951. 2009. View Article : Google Scholar : PubMed/NCBI

23 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

24 

Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U and Speed TP: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 4:249–264. 2003. View Article : Google Scholar : PubMed/NCBI

25 

Liao Q, Liu C, Yuan X, Kang S, Miao R, Xiao H, Zhao G, Luo H, Bu D, Zhao H, et al: Large-scale prediction of long non-coding RNA functions in a coding-non-coding gene co-expression network. Nucleic Acids Res. 39:3864–3878. 2011. View Article : Google Scholar : PubMed/NCBI

26 

Huang Da W, Sherman BT and Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 4:44–57. 2008. View Article : Google Scholar

27 

Huang Da W, Sherman BT and Lempicki RA: Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37:1–13. 2009. View Article : Google Scholar : PubMed/NCBI

28 

Luo W and Brouwer C: Pathview: An R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics. 29:1830–1831. 2013. View Article : Google Scholar : PubMed/NCBI

29 

Lin MF, Jungreis I and Kellis M: PhyloCSF: A comparative genomics method to distinguish protein coding and non-coding regions. Bioinformatics. 27:i275–i282. 2011. View Article : Google Scholar : PubMed/NCBI

30 

Wingender E, Chen X, Hehl R, Karas H, Liebich I, Matys V, Meinhardt T, Prüss M, Reuter I and Schacherer F: TRANSFAC: An integrated system for gene expression regulation. Nucleic Acids Res. 28:316–319. 2000. View Article : Google Scholar : PubMed/NCBI

31 

Geiling B, Vandal G, Posner AR, de Bruyns A, Dutchak KL, Garnett S and Dankort D: A modular lentiviral and retroviral construction system to rapidly generate vectors for gene expression and gene knockdown in vitro and in vivo. PLos One. 8:e762792013. View Article : Google Scholar : PubMed/NCBI

32 

Will S and Jabbari H: Sparse RNA folding revisited: Space-efficient minimum free energy structure prediction. Algorithms Mol Biol. 11:72016. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

August 2019
Volume 42 Issue 2

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Chen, Y., Zhao, G., Li, N., Luo, Z., Wang, X., & Gu, J. (2019). Role of 4‑aminobutyrate aminotransferase (ABAT) and the lncRNA co‑expression network in the development of myelodysplastic syndrome. Oncology Reports, 42, 509-520. https://doi.org/10.3892/or.2019.7175
MLA
Chen, Y., Zhao, G., Li, N., Luo, Z., Wang, X., Gu, J."Role of 4‑aminobutyrate aminotransferase (ABAT) and the lncRNA co‑expression network in the development of myelodysplastic syndrome". Oncology Reports 42.2 (2019): 509-520.
Chicago
Chen, Y., Zhao, G., Li, N., Luo, Z., Wang, X., Gu, J."Role of 4‑aminobutyrate aminotransferase (ABAT) and the lncRNA co‑expression network in the development of myelodysplastic syndrome". Oncology Reports 42, no. 2 (2019): 509-520. https://doi.org/10.3892/or.2019.7175