Open Access

let‑7 and miR‑17 promote self‑renewal and drive gefitinib resistance in non‑small cell lung cancer

  • Authors:
    • Jun Yin
    • Weimin Hu
    • Lei Pan
    • Wenfan Fu
    • Lu Dai
    • Zeyong Jiang
    • Feng Zhang
    • Jian Zhao
  • View Affiliations

  • Published online on: June 12, 2019     https://doi.org/10.3892/or.2019.7197
  • Pages: 495-508
  • Copyright: © Yin et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Epidermal growth factor receptor‑tyrosinase kinase inhibitor (EGFR‑TKI) resistance represents a major obstacle in the therapy of non‑small cell lung cancer (NSCLC), and the underlying molecular mechanisms are unknown. In this study, it was found that let‑7 family expression was downregulated and miR‑17 family expression was upregulated in gefitinib‑resistant PC9/GR cells compared with gefitinib‑sensitive PC9 cells. The downregulation of let‑7 and upregulation of miR‑17 have significant clinical relevance to gefitinib resistance in NSCLC. Moreover, it was shown that downregulation of let‑7 and upregulation of miR‑17 promoted resistance to gefitinib by regulating the self‑renewal capability of NSCLC cells. In addition, let‑7 participated in the maintenance of stem cell characteristics by regulating the target gene MYC, and miR‑17 participated in regulation of the cell cycle by regulating the target gene CDKN1A. In NSCLC cells, low expression of let‑7 increased MYC expression to help maintain the undifferentiated status, and high expression of miR‑17 decreased CDKN1A expression to help maintain the proliferative potential. Thus, both let‑7 and miR‑17 promoted self‑renewal, which is typical of stem cell‑like characteristics and resulted in gefitinib resistance. Therefore, this study demonstrated that let‑7 and miR‑17 were involved in the regulation of EGFR‑TKI resistance, and could be used as predictive biomarkers of EGFR‑TKI resistance in NSCLC.

References

1 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2016. CA Cancer J Clin. 66:7–30. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China, 2016. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Mitsudomi T, Suda K and Yatabe Y: Surgery for NSCLC in the era of personalized medicine. Nat Rev Clin Oncol. 10:235–244. 2013. View Article : Google Scholar : PubMed/NCBI

4 

Park SR, Davis M, Doroshow JH and Kummar S: Safety and feasibility of targeted agent combinations in solid tumours. Nat Rev Clin Oncol. 10:154–168. 2013. View Article : Google Scholar : PubMed/NCBI

5 

Tebbutt N, Pedersen MW and Johns TG: Targeting the ERBB family in cancer: Couples therapy. Nat Rev Cancer. 13:663–673. 2013. View Article : Google Scholar : PubMed/NCBI

6 

Blakely CM, Watkins TBK, Wu W, Gini B, Chabon JJ, McCoach CE, McGranahan N, Wilson GA, Birkbak NJ, Olivas VR, et al: Evolution and clinical impact of co-occurring genetic alterations in advanced-stage EGFR-mutant lung cancers. Nat Genet. 49:1693–1704. 2017. View Article : Google Scholar : PubMed/NCBI

7 

Rotow J and Bivona TG: Understanding and targeting resistance mechanisms in NSCLC. Nat Rev Cancer. 17:637–658. 2017. View Article : Google Scholar : PubMed/NCBI

8 

Sequist LV, Bell DW, Lynch TJ and Haber DA: Molecular predictors of response to epidermal growth factor receptor antagonists in non-small-cell lung cancer. J Clin Oncol. 25:587–595. 2007. View Article : Google Scholar : PubMed/NCBI

9 

Ha M and Kim VN: Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 15:509–524. 2014. View Article : Google Scholar : PubMed/NCBI

10 

Filipowicz W, Bhattacharyya SN and Sonenberg N: Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? Nat Rev Genet. 9:102–114. 2008. View Article : Google Scholar : PubMed/NCBI

11 

Lin S and Gregory RI: MicroRNA biogenesis pathways in cancer. Nat Rev Cancer. 15:321–333. 2015. View Article : Google Scholar : PubMed/NCBI

12 

Lee YS and Dutta A: MicroRNAs in cancer. Annu Rev Pathol. 4:199–227. 2009. View Article : Google Scholar : PubMed/NCBI

13 

Shin JI and Brusselle GG: Mechanistic links between COPD and lung cancer: A role of microRNA let-7? Nat Rev Cancer. 14:702014. View Article : Google Scholar : PubMed/NCBI

14 

Guinot A, Oeztuerk-Winder F and Ventura JJ: miR-17-92/p38α dysregulation enhances Wnt signaling and selects Lgr6+ cancer stem-like cells during lung adenocarcinoma progression. Cancer Res. 76:4012–4022. 2016. View Article : Google Scholar : PubMed/NCBI

15 

Osada H and Takahashi T: let-7 and miR-17-92: Small-sized major players in lung cancer development. Cancer Sci. 102:9–17. 2011. View Article : Google Scholar : PubMed/NCBI

16 

Takebe N, Miele L, Harris PJ, Jeong W, Bando H, Kahn M, Yang SX and Ivy SP: Targeting notch, hedgehog, and wnt pathways in cancer stem cells: Clinical update. Nat Rev Clin Oncol. 12:445–464. 2015. View Article : Google Scholar : PubMed/NCBI

17 

MacDonagh L, Gray SG, Breen E, Cuffe S, Finn SP, O'Byrne KJ and Barr MP: Lung cancer stem cells: The root of resistance. Cancer Lett. 372:147–156. 2016. View Article : Google Scholar : PubMed/NCBI

18 

Pattabiraman DR and Weinberg RA: Tackling the cancer stem cells-What challenges do they pose? Nat Rev Drug Discov. 13:497–512. 2014. View Article : Google Scholar : PubMed/NCBI

19 

Lopez-Ayllon BD, Moncho-Amor V, Abarrategi A, Ibañez de Cáceres I, Castro-Carpeño J, Belda-Iniesta C, Perona R and Sastre L: Cancer stem cells and cisplatin-resistant cells isolated from non-small-lung cancer cell lines constitute related cell populations. Cancer Med. 3:1099–1111. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Shien K, Toyooka S, Yamamoto H, Soh J, Jida M, Thu KL, Hashida S, Maki Y, Ichihara E, Asano H, et al: Acquired resistance to EGFR inhibitors is associated with a manifestation of stem cell-like properties in cancer cells. Cancer Res. 73:3051–3061. 2013. View Article : Google Scholar : PubMed/NCBI

21 

Flemming A: Cancer stem cells: Targeting the root of cancer relapse. Nat Rev Drug Discov. 14:1652015. View Article : Google Scholar : PubMed/NCBI

22 

Wicha MS: Targeting self-renewal, an achilles' heel of cancer stem cells. Nat Med. 20:14–15. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Ravasio R, Ceccacci E and Minucci S: Self-renewal of tumor cells: Epigenetic determinants of the cancer stem cell phenotype. Curr Opin Genet Dev. 36:92–99. 2016. View Article : Google Scholar : PubMed/NCBI

24 

Hwang WL, Jiang JK, Yang SH, Huang TS, Lan HY, Teng HW, Yang CY, Tsai YP, Lin CH, Wang HW and Yang MH: MicroRNA-146a directs the symmetric division of snail-dominant colorectal cancer stem cells. Nat Cell Biol. 16:268–280. 2014. View Article : Google Scholar : PubMed/NCBI

25 

Lv C, Li F, Li X, Tian Y, Zhang Y, Sheng X, Song Y, Meng Q, Yuan S, Luan L, et al: miR-31 promotes mammary stem cell expansion and breast tumorigenesis by suppressing wnt signaling antagonists. Nat Commun. 8:10362017. View Article : Google Scholar : PubMed/NCBI

26 

Deng L, Shang L, Bai S, Chen J, He X, Martin-Trevino R, Chen S, Li XY, Meng X, Yu B, et al: MicroRNA100 inhibits self-renewal of breast cancer stem-like cells and breast tumor development. Cancer Res. 74:6648–6660. 2014. View Article : Google Scholar : PubMed/NCBI

27 

Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR and Ruvkun G: The 21-nucleotide let-7 RNA regulates developmental timing in caenorhabditis elegans. Nature. 403:901–906. 2000. View Article : Google Scholar : PubMed/NCBI

28 

Nimmo RA and Slack FJ: An elegant miRror: MicroRNAs in stem cells, developmental timing and cancer. Chromosoma. 118:405–418. 2009. View Article : Google Scholar : PubMed/NCBI

29 

Hertel J, Bartschat S, Wintsche A and Otto C: Students of the bioinformatics computer lab and stadler PF: Evolution of the let-7 microRNA family. RNA Biol. 9:231–241. 2012. View Article : Google Scholar : PubMed/NCBI

30 

Boyerinas B, Park SM, Hau A, Murmann AE and Peter ME: The role of let-7 in cell differentiation and cancer. Endocr Relat Cancer. 17:F19–F36. 2010. View Article : Google Scholar : PubMed/NCBI

31 

Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, et al: Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 64:3753–3756. 2004. View Article : Google Scholar : PubMed/NCBI

32 

Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, Huang Y, Hu X, Su F, Lieberman J and Song E: let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell. 131:1109–1123. 2007. View Article : Google Scholar : PubMed/NCBI

33 

Gabay M, Li Y and Felsher DW: MYC activation is a hallmark of cancer initiation and maintenance. Cold Spring Harb Perspect Med. 4:a0142412014. View Article : Google Scholar : PubMed/NCBI

34 

Mendell JT: MiRiad roles for the miR-17-92 cluster in development and disease. Cell. 133:217–222. 2008. View Article : Google Scholar : PubMed/NCBI

35 

Jin HY, Oda H, Lai M, Skalsky RL, Bethel K, Shepherd J, Kang SG, Liu WH, Sabouri-Ghomi M, Cullen BR, et al: MicroRNA-17~92 plays a causative role in lymphomagenesis by coordinating multiple oncogenic pathways. EMBO J. 32:2377–2391. 2013. View Article : Google Scholar : PubMed/NCBI

36 

Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S, Yatabe Y, Kawahara K, Sekido Y and Takahashi T: A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res. 65:9628–9632. 2005. View Article : Google Scholar : PubMed/NCBI

37 

Matsubara H, Takeuchi T, Nishikawa E, Yanagisawa K, Hayashita Y, Ebi H, Yamada H, Suzuki M, Nagino M, Nimura Y, et al: Apoptosis induction by antisense oligonucleotides against miR-17-5p and miR-20a in lung cancers overexpressing miR-17-92. Oncogene. 26:6099–6105. 2007. View Article : Google Scholar : PubMed/NCBI

38 

Murphy BL, Obad S, Bihannic L, Ayrault O, Zindy F, Kauppinen S and Roussel MF: Silencing of the miR-17~92 cluster family inhibits medulloblastoma progression. Cancer Res. 73:7068–7078. 2013. View Article : Google Scholar : PubMed/NCBI

39 

Abbas T and Dutta A: P21 in cancer: Intricate networks and multiple activities. Nat Rev Cancer. 9:400–414. 2009. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

August 2019
Volume 42 Issue 2

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Yin, J., Hu, W., Pan, L., Fu, W., Dai, L., Jiang, Z. ... Zhao, J. (2019). let‑7 and miR‑17 promote self‑renewal and drive gefitinib resistance in non‑small cell lung cancer . Oncology Reports, 42, 495-508. https://doi.org/10.3892/or.2019.7197
MLA
Yin, J., Hu, W., Pan, L., Fu, W., Dai, L., Jiang, Z., Zhang, F., Zhao, J."let‑7 and miR‑17 promote self‑renewal and drive gefitinib resistance in non‑small cell lung cancer ". Oncology Reports 42.2 (2019): 495-508.
Chicago
Yin, J., Hu, W., Pan, L., Fu, W., Dai, L., Jiang, Z., Zhang, F., Zhao, J."let‑7 and miR‑17 promote self‑renewal and drive gefitinib resistance in non‑small cell lung cancer ". Oncology Reports 42, no. 2 (2019): 495-508. https://doi.org/10.3892/or.2019.7197