Combination of SB431542, CHIR99021 and PD0325901 has a synergic effect on abrogating valproic acid‑induced epithelial‑mesenchymal transition and stemness in HeLa, 5637 and SCC‑15 cells

  • Authors:
    • Yanmin Zhang
    • Yusen Zhang
    • Minghua Li
    • Fanhua Meng
    • Zhendong Yu
    • Yun Chen
    • Guanghui Cui
  • View Affiliations

  • Published online on: April 1, 2019     https://doi.org/10.3892/or.2019.7088
  • Pages: 3545-3554
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Epithelial‑mesenchymal transition (EMT) plays an important role in cancer progression, metastasis and drug resistance, and recent studies have revealed that neoplastic epithelial cells regain the stem cell state through EMT. Single‑agent targeted cancer therapy frequently fails due to acquired drug resistance. Therefore, multi‑agent targeted therapy exhibits advantages in fighting cancer cells. In the present study, small molecule inhibitors SB431542 (ALK inhibitor), CHIR99021 (GSK3 pathway inhibitor), PD0325901 (MEK/ERK inhibitor) and valproic acid (VPA; HDAC inhibitor) were applied individually or in combination to HeLa uterine cervix carcinoma cells, 5637 bladder cancer cells and SCC‑15 squamous cell carcinoma cells to clarify their potential effects on cancer cells. Cell morphological alterations, pluripotency and EMT‑related gene expression, cell growth rate, cell migration, signal transduction, cell cycle arrest, CD24‑/CD44+ cell percentage, and in vivo tumor clump formation were evaluated. The results of the present study revealed that VPA treatment induced EMT morphology, upregulated the expression of pluripotency and EMT‑related genes, promoted migration and increased CD24‑/CD44+ cell percentage in all three cell lines. PD0325901, SB431542 and CHIR99021 in combination could significantly inhibit cell growth, suppress expression of pluripotency and EMT‑related genes, curb cell migration, cause cell cycle arrest, decrease CD24‑/CD44+ cell percentage in cell spheres, and delay in vivo cell clump formation of cancer cells. These data indicated that VPA may serve as an EMT and cancer stem cell‑promoting agent that may be useful in establishing a screening system for potential anticancer stem cell drugs. The combined inhibition of MEK/ERK, ALK and GSK3 was revealed to be an effective measure for eliminating cancer stem cells.

References

1 

Shi Y, Do JT, Desponts C, Hahm HS, Scholer HR and Ding S: A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell. 2:525–528. 2008. View Article : Google Scholar : PubMed/NCBI

2 

Lin TX, Ambasudhan R, Yuan X, Li WL, Hilcove S, Abujarour R, Lin XY, Hahm HS, Hao E, Hayek A, et al: A chemical platform forimproved induction of human iPscs. Nat Methods. 6:805–808. 2009. View Article : Google Scholar : PubMed/NCBI

3 

Huangfu DW, Osafune KJ, Maehr R, Guo WJ, Eijkelenboom A, Chen SB, Muhlestein W and Melton DA: Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol. 26:1269–1275. 2008. View Article : Google Scholar : PubMed/NCBI

4 

Li YQ, Zhang Q, Yin XL, Yang WF, Du YY, Hou PP, Ge J, Liu C, Zhang WQ, Zhang X, et al: Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and small molecules. Cell Res. 21:196–204. 2011. View Article : Google Scholar : PubMed/NCBI

5 

Ji MY, Lee EJ, Kim KB, Kim YM, Sung RY, Lee SJ, Kim DS and Park SM: HDAC inhibitors induce epithelial-mesenchymal transition in colon carcinoma cells. Oncol Rep. 33:2299–2308. 2015. View Article : Google Scholar : PubMed/NCBI

6 

Vincent EE, Elder DJ, O'Flaherty L, Pardo OE, Dzien P, Phillips L, Morgan C, Pawade J, May MT, Sohail M, et al: Glycogen synthase kinase 3 protein kinase activity is frequently elevated in human non-small cell lung carcinoma and supports tumour cell proliferation. PLoS One. 9:e1147252014. View Article : Google Scholar : PubMed/NCBI

7 

Chua KN, Kong LR, Sim WJ, Ng HC, Ong WR, Thiery JP, Huynh H and Goh BC: Combinatorial treatment using targeted MEK and SRC inhibitors synergistically abrogates tumor cell growth and induces mesenchymal-epithelial transition in non-small-cell lung carcinoma. Oncotarget. 6:29991–30005. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Lu Y, Jiang F, Zheng X, Katakowski M, Buller B, To SS and Chopp M: TGF-β1 promotes motility and invasiveness of glioma cells through activation of ADAM17. Oncol Rep. 25:1329–1335. 2011.PubMed/NCBI

9 

Noguchi S, Eitoku M, Moriya S, Kondo S, Kiyosawa H, Watanabe T and Suganuma N: Regulation of gene expression by sodium valproate in epithelial-to-mesenchymal transition. Lung. 193:691–700. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Hugo H, Ackland ML, Blick T, Lawrence MG, Clements JA, Williams ED and Thompson EW: Epithelial-mesenchymal and mesenchymal-epithelial transitions in carcinoma progression. J Cell Physiol. 213:374–383. 2007. View Article : Google Scholar : PubMed/NCBI

11 

Thiery JP: Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2:442–454. 2002. View Article : Google Scholar : PubMed/NCBI

12 

Kong D, Li Y, Wang Z, Banerjee S, Ahmad A, Kim HR and Sarkar FH: miR-200 Regulates PDGF-D-mediated epithelial-mesenchymal transition, adhesion, and invasion of prostate cancer cells. Stem Cells. 27:1712–1721. 2009. View Article : Google Scholar : PubMed/NCBI

13 

Kong D, Banerjee S, Ahmad A, Li Y, Wang Z, Sethi S and Sarkar FH: Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells. PLoS One. 5:e124452010. View Article : Google Scholar : PubMed/NCBI

14 

Kong D, Li Y, Wang Z and Sarkar FH: Cancer stem cells and epithelial-to mesenchymal transition (EMT)-phenotypic cells: Are they cousins or twins? Cancers. 3:716–729. 2011. View Article : Google Scholar : PubMed/NCBI

15 

Li Y, VandenBoom TG II, Kong D, Wang Z, Ali S, Philip PA and Sarkar FH: Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-tomesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res. 69:6704–6712. 2009. View Article : Google Scholar : PubMed/NCBI

16 

Singh A and Settleman J: EMT, cancer stem cells and drug resistance: An emerging axis of evil in the war on cancer. Oncogene. 29:4741–4751. 2010. View Article : Google Scholar : PubMed/NCBI

17 

Robey RW, Chakraborty AR, Basseville A, Luchenko V, Bahr J, Zhan Z and Bates SE: Histone deacetylase inhibitors: Emerging mechanisms of resistance. Mol Pharm. 8:2021–2031. 2011. View Article : Google Scholar : PubMed/NCBI

18 

Díaz-Núñez M, Díez-Torre A, Wever D, Andrade R, Arluzea J, Silió M and Aréchaga J: Histone deacetylase inhibitors induce invasion of human melanoma cells in vitro via differential regulation of N-cadherin expression and RhoA activity. BMC Cancer. 22:6672016. View Article : Google Scholar

19 

Pang L, Li Q, Wei C, Zou H, Li S, Cao W, He J, Zhou Y, Ju X, Lan J, et al: TGF-β1/Smad signaling pathway regulates epithelial-to-mesenchymal transition in esophageal squamous cell carcinoma: In vitro and clinical analyses of cell lines and nomadic Kazakh patients from northwest Xinjiang, China. PLoS One. 9:e1123002014. View Article : Google Scholar : PubMed/NCBI

20 

Miao ZF, Zhao TT, Wang ZN, Miao F, Xu YY, Mao XY, Gao J, Wu Jh, Liu XY, You Y, et al: Transforming growth factor-beta1 signaling blockade attenuates gastric cancer cell-induced peritoneal mesothelial cell fibrosis and alleviates peritoneal dissemination both in vitro and in vivo. Tumour Biol. 35:3575–3583. 2014. View Article : Google Scholar : PubMed/NCBI

21 

Kim YJ, Hwang JS, Hong YB, Bae I and Seong YS: Transforming growth factor beta receptor I inhibitor sensitizes drug-resistant pancreatic cancer cells to gemcitabine. Anticancer Res. 32:799–806. 2012.PubMed/NCBI

22 

Henderson YC, Chen Y, Frederick MJ, Lai SY and Clayman GL: MEK inhibitor PD0325901 significantly reduces the growth of papillary thyroid carcinoma cells in vitro and in vivo. Mol Cancer Ther. 9:1968–1976. 2010. View Article : Google Scholar : PubMed/NCBI

23 

Chen X, Wu Q, Tan L, Porter D, Jager MJ, Emery C and Bastian BC: Combined PKC and MEK inhibition in uveal melanoma with GNAQ and GNA11 mutations. Oncogene. 33:4724–4734. 2014. View Article : Google Scholar : PubMed/NCBI

24 

Marchand B, Tremblay I, Cagnol S and Boucher MJ: Inhibition of glycogen synthase kinase-3 activity triggers an apoptotic response in pancreatic cancer cells through JNK-dependent mechanisms. Carcinogenesis. 33:529–537. 2012. View Article : Google Scholar : PubMed/NCBI

25 

Lackner MR, Wilson TR and Settleman J: Mechanisms of acquired resistance to targeted cancer therapies. Future Oncol. 8:999–1014. 2012. View Article : Google Scholar : PubMed/NCBI

26 

Yun CH, Mengwasser KE, Toms AV, Woo MS, Greulich H, Wong KK, Meyerson M and Eck MJ: The T790M mutation in EGFR kinase causes drug resistance by increasing the affnity for ATP. Proc Natl Acad Sci USA. 105:2070–2075. 2008. View Article : Google Scholar : PubMed/NCBI

27 

Buck E, Eyzaguirre A, Rosenfeld-Franklin M, Thomson S, Mulvihill M, Barr S, Brown E, O'Connor M, Yao Y, Pachter J, et al: Feedback mechanisms promote cooperativity for small molecule inhibitors of epidermal and insulin-like growth factor receptors. Cancer Res. 68:8322–8332. 2008. View Article : Google Scholar : PubMed/NCBI

28 

Fukumoto S, Kanbara K and Neo M: Synergistic anti-proliferative effects of mTOR and MEK inhibitors in high-grade chondrosarcoma cell line OUMS-27. Acta Histochem. 120:142–150. 2018. View Article : Google Scholar : PubMed/NCBI

29 

Langlands AJ, Carroll TD, Chen Y and Näthke I: Chir99021 and Valproic acid reduce the proliferative advantage of Apc mutant cells. Cell Death Dis. 9:2552018. View Article : Google Scholar : PubMed/NCBI

30 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

31 

Lee YJ, Wu CC, Li J, Ou CC, Hsu SC, Tseng HH, Kao MC and Liu JY: A rational approach for cancer stem-like cell isolation and characterization using CD44 andprominin-1(CD133) as selection markers. Oncotarget. 7:78499–78515. 2016. View Article : Google Scholar : PubMed/NCBI

32 

Blake RA, Broome MA, Liu X, Wu J, Gishizky M, Sun L and Courtneidge SA: SU6656, a selective src family kinase inhibitor, used to probe growth factor signaling. Mol Cell Biol. 20:9018–9027. 2000. View Article : Google Scholar : PubMed/NCBI

33 

Marchion D and Munster P: Development of histone deacetylase inhibitors for cancer treatment. Expert Rev Anticancer Ther. 7:583–598. 2007. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 41 Issue 6

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Zhang, Y., Zhang, Y., Li, M., Meng, F., Yu, Z., Chen, Y., & Cui, G. (2019). Combination of SB431542, CHIR99021 and PD0325901 has a synergic effect on abrogating valproic acid‑induced epithelial‑mesenchymal transition and stemness in HeLa, 5637 and SCC‑15 cells. Oncology Reports, 41, 3545-3554. https://doi.org/10.3892/or.2019.7088
MLA
Zhang, Y., Zhang, Y., Li, M., Meng, F., Yu, Z., Chen, Y., Cui, G."Combination of SB431542, CHIR99021 and PD0325901 has a synergic effect on abrogating valproic acid‑induced epithelial‑mesenchymal transition and stemness in HeLa, 5637 and SCC‑15 cells". Oncology Reports 41.6 (2019): 3545-3554.
Chicago
Zhang, Y., Zhang, Y., Li, M., Meng, F., Yu, Z., Chen, Y., Cui, G."Combination of SB431542, CHIR99021 and PD0325901 has a synergic effect on abrogating valproic acid‑induced epithelial‑mesenchymal transition and stemness in HeLa, 5637 and SCC‑15 cells". Oncology Reports 41, no. 6 (2019): 3545-3554. https://doi.org/10.3892/or.2019.7088