Acquisition of gemcitabine resistance enhances angiogenesis via upregulation of IL‑8 production in pancreatic cancer

  • Authors:
    • Hiroyuki Imafuji
    • Yoichi Matsuo
    • Goro Ueda
    • Kan Omi
    • Yuichi Hayashi
    • Kenta Saito
    • Ken Tsuboi
    • Mamoru Morimoto
    • Shuji Koide
    • Ryo Ogawa
    • Masayasu Hara
    • Hiroki Takahashi
    • Shuji Takiguchi
  • View Affiliations

  • Published online on: April 9, 2019     https://doi.org/10.3892/or.2019.7105
  • Pages: 3508-3516
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Gemcitabine (Gem) is widely used as chemotherapy for pancreatic cancer (PaCa), but its effect is not fully satisfactory. One of the reasons for this is the acquisition of Gem resistance (Gem‑R). To elucidate the mechanism of Gem‑R, two Gem‑R PaCa cell lines were established from AsPC‑1 and MIA PaCa‑2 cells. It was demonstrated that expression of interleukin‑8 (IL‑8) mRNA was significantly upregulated in Gem‑R PaCa cells by cDNA microarray and RT‑qPCR analyses. Increased IL‑8 secretion by Gem‑R cells was confirmed by cytokine array and enzyme‑linked immunosorbent assay. Moreover, we found that co‑culture with Gem‑R PaCa cells significantly enhanced tube formation of human umbilical vein endothelial cells, and treatment with an anti‑CXCR2 (main receptor for IL‑8) antibody significantly prevented this effect. We previously reported that a chemokine network centered on the IL‑8/CXCR2 axis plays an important role in PaCa angiogenesis, and suppression of this axis has an antitumor effect. Since acquisition of Gem‑R increased IL‑8 production and consequently increased tumor angiogenesis, the IL‑8/CXCR2 axis may be a potential novel therapeutic target for PaCa after acquiring Gem‑R.

References

1 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2018. CA Cancer J Clin. 68:7–30. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Ilic M and Ilic I: Epidemiology of pancreatic cancer. World J Gastroenterol. 22:9694–9705. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Niedergethmann M, Alves F, Neff JK, Heidrich B, Aramin N, Li L, Pilarsky C, Grützmann R, Allgayer H, Post S, et al: Gene expression profiling of liver metastases and tumour invasion in pancreatic cancer using an orthotopic SCID mouse model. Br J Cancer. 97:1432–1440. 2007. View Article : Google Scholar : PubMed/NCBI

4 

Kamisawa T, Wood LD, Itoi T and Takaori K: Pancreatic cancer. Lancet. 388:73–85. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Gillen S, Schuster T, Meyer Zum Büschenfelde C, Friess H and Kleeff J: Preoperative/neoadjuvant therapy in pancreatic cancer: A systematic review and meta-analysis of response and resection percentages. PLoS Med. 7:e10002672010. View Article : Google Scholar : PubMed/NCBI

6 

Wong HH and Lemoine NR: Pancreatic cancer: Molecular pathogenesis and new therapeutic targets. Nat Rev Gastroenterol Hepatol. 6:412–422. 2009. View Article : Google Scholar : PubMed/NCBI

7 

Burris HA III, Moore MJ, Andersen J, Green MR, Rothenberg ML, Modiano MR, Cripps MC, Portenoy RK, Storniolo AM, Tarassoff P, et al: Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: A randomized trial. J Clin Oncol. 15:2403–2413. 1997. View Article : Google Scholar : PubMed/NCBI

8 

Raman D, Baugher PJ, Thu YM and Richmond A: Role of chemokines in tumor growth. Cancer Lett. 256:137–165. 2007. View Article : Google Scholar : PubMed/NCBI

9 

Kulbe H, Levinson NR, Balkwill F and Wilson JL: The chemokine network in cancer-much more than directing cell movement. Int J Dev Biol. 48:489–496. 2004. View Article : Google Scholar : PubMed/NCBI

10 

Baggiolini M, Walz A and Kunkel SL: Neutrophil-activating peptide-1/interleukin 8, a novel cytokine that activates neutrophils. J Clin Invest. 84:1045–1049. 1989. View Article : Google Scholar : PubMed/NCBI

11 

Kuwada Y, Sasaki T, Morinaka K, Kitadai Y, Mukaida N and Chayama K: Potential involvement of IL-8 and its receptors in the invasiveness of pancreatic cancer cells. Int J Oncol. 22:765–771. 2003.PubMed/NCBI

12 

Brat DJ, Bellail AC and Van Meir EG: The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro Oncol. 7:122–133. 2005. View Article : Google Scholar : PubMed/NCBI

13 

Konno H, Ohta M, Baba M, Suzuki S and Nakamura S: The role of circulating IL-8 and VEGF protein in the progression of gastric cancer. Cancer Sci. 94:735–740. 2003. View Article : Google Scholar : PubMed/NCBI

14 

Todorović-Raković N and Milovanović J: Interleukin-8 in breast cancer progression. J Interferon Cytokine Res. 33:563–570. 2013. View Article : Google Scholar : PubMed/NCBI

15 

Lin Y, Huang R, Chen L, Li S, Shi Q, Jordan C and Huang RP: Identification of interleukin-8 as estrogen receptor-regulated factor involved in breast cancer invasion and angiogenesis by protein arrays. Int J Cancer. 109:507–515. 2004. View Article : Google Scholar : PubMed/NCBI

16 

Shi J and Wei PK: Interleukin-8: A potent promoter of angiogenesis in gastric cancer. Oncol Lett. 11:1043–1050. 2016. View Article : Google Scholar : PubMed/NCBI

17 

Ning Y, Manegold PC, Hong YK, Zhang W, Pohl A, Lurje G, Winder T, Yang D, LaBonte MJ, Wilson PM, et al: Interleukin-8 is associated with proliferation, migration, angiogenesis and chemosensitivity in vitro and in vivo in colon cancer cell line models. Int J Cancer. 128:2038–2049. 2011. View Article : Google Scholar : PubMed/NCBI

18 

Jia L, Li F, Shao M, Zhang W, Zhang C, Zhao X, Luan H, Qi Y, Zhang P, Liang L, et al: IL-8 is upregulated in cervical cancer tissues and is associated with the proliferation and migration of HeLa cervical cancer cells. Oncol Lett. 15:1350–1356. 2018.PubMed/NCBI

19 

Srivastava SK, Bhardwaj A, Arora S, Tyagi N, Singh AP, Carter JE, Scammell JG, Fodstad Ø and Singh S: Interleukin-8 is a key mediator of FKBP51-induced melanoma growth, angiogenesis and metastasis. Br J Cancer. 112:1772–1781. 2015. View Article : Google Scholar : PubMed/NCBI

20 

Matsuo Y, Raimondo M, Woodward TA, Wallace MB, Gill KR, Tong Z, Burdick MD, Yang Z, Strieter RM, Hoffman RM and Guha S: CXC-chemokine/CXCR2 biological axis promotes angiogenesis in vitro and in vivo in pancreatic cancer. Int J Cancer. 125:1027–1037. 2009. View Article : Google Scholar : PubMed/NCBI

21 

Matsuo Y, Sawai H, Funahashi H, Takahashi H, Sakamoto M, Yamamoto M, Okada Y, Hayakawa T and Manabe T: Enhanced angiogenesis due to inflammatory cytokines from pancreatic cancer cell lines and relation to metastatic potential. Pancreas. 28:344–352. 2004. View Article : Google Scholar : PubMed/NCBI

22 

Osugi T, Oshima Y, Fujio Y, Funamoto M, Yamashita A, Negoro S, Kunisada K, Izumi M, Nakaoka Y, Hirota H, et al: Cardiac-specific activation of signal transducer and activator of transcription 3 promotes vascular formation in the heart. J Biol Chem. 277:6676–6681. 2002. View Article : Google Scholar : PubMed/NCBI

23 

Bishop ET, Bell GT, Bloor S, Broom IJ, Hendry NF and Wheatley DN: An in vitro model of angiogenesis: Basic features. Angiogenesis. 3:335–344. 1999. View Article : Google Scholar : PubMed/NCBI

24 

Matsuo Y, Ochi N, Sawai H, Yasuda A, Takahashi H, Funahashi H, Takeyama H, Tong Z and Guha S: CXCL8/IL-8 and CXCL12/SDF-1alpha co-operatively promote invasiveness and angiogenesis in pancreatic cancer. Int J Cancer. 124:853–861. 2009. View Article : Google Scholar : PubMed/NCBI

25 

Ohhashi S, Ohuchida K, Mizumoto K, Fujita H, Egami T, Yu J, Toma H, Sadatomi S, Nagai E and Tanaka M: Down-regulation of deoxycytidine kinase enhances acquired resistance to gemcitabine in pancreatic cancer. Anticancer Res. 28:2205–2212. 2008.PubMed/NCBI

26 

Minami K, Shinsato Y, Yamamoto M, Takahashi H, Zhang S, Nishizawa Y, Tabata S, Ikeda R, Kawahara K, Tsujikawa K, et al: Ribonucleotide reductase is an effective target to overcome gemcitabine resistance in gemcitabine-resistant pancreatic cancer cells with dual resistant factors. J Pharmacol Sci. 127:319–325. 2015. View Article : Google Scholar : PubMed/NCBI

27 

Waters JA, Matos J, Yip-Schneider M, Aguilar-Saavedra JR, Crean CD, Beane JD, Dumas RP, Suvannasankha A and Schmidt CM: Targeted nuclear factor-kappaB suppression enhances gemcitabine response in human pancreatic tumor cell line murine xenografts. Surgery. 158:881–889. 2015. View Article : Google Scholar : PubMed/NCBI

28 

Arlt A, Gehrz A, Müerköster S, Vorndamm J, Kruse ML, Fölsch UR and Schäfer H: Role of NF-kappaB and Akt/PI3K in the resistance of pancreatic carcinoma cell lines against gemcitabine-induced cell death. Oncogene. 22:3243–3251. 2003. View Article : Google Scholar : PubMed/NCBI

29 

Zheng C, Jiao X, Jiang Y and Sun S: ERK1/2 activity contributes to gemcitabine resistance in pancreatic cancer cells. J Int Med Res. 41:300–306. 2013. View Article : Google Scholar : PubMed/NCBI

30 

Wang R, Cheng L, Xia J and Wang Z, Wu Q and Wang Z: Gemcitabine resistance is associated with epithelial-mesenchymal transition and induction of HIF-1α in pancreatic cancer cells. Curr Cancer Drug Targets. 14:407–417. 2014. View Article : Google Scholar : PubMed/NCBI

31 

Chen M, Xue X, Wang F, An Y, Tang D, Xu Y, Wang H, Yuan Z, Gao W, Wei J, et al: Expression and promoter methylation analysis of ATP-binding cassette genes in pancreatic cancer. Oncol Rep. 27:265–269. 2012.PubMed/NCBI

32 

Quint K, Tonigold M, Di Fazio P, Montalbano R, Lingelbach S, Rückert F, Alinger B, Ocker M and Neureiter D: Pancreatic cancer cells surviving gemcitabine treatment express markers of stem cell differentiation and epithelial-mesenchymal transition. Int J Oncol. 41:2093–2102. 2012. View Article : Google Scholar : PubMed/NCBI

33 

Liu Q, Li A, Tian Y, Wu JD, Liu Y, Li T, Chen Y, Han X and Wu K: The CXCL8-CXCR1/2 pathways in cancer. Cytokine Growth Factor Rev. 31:61–71. 2016. View Article : Google Scholar : PubMed/NCBI

34 

Li A, Dubey S, Varney ML, Dave BJ and Singh RK: IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J Immunol. 170:3369–3376. 2003. View Article : Google Scholar : PubMed/NCBI

35 

Heidemann J, Ogawa H, Dwinell MB, Rafiee P, Maaser C, Gockel HR, Otterson MF, Ota DM, Lugering N, Domschke W and Binion DG: Angiogenic effects of interleukin 8 (CXCL8) in human intestinal microvascular endothelial cells are mediated by CXCR2. J Biol Chem. 278:8508–8515. 2003. View Article : Google Scholar : PubMed/NCBI

36 

Olson TS and Ley K: Chemokines and chemokine receptors in leukocyte trafficking. Am J Physiol Regul Integr Comp Physiol. 283:R7–R28. 2002. View Article : Google Scholar : PubMed/NCBI

37 

Hertzer KM, Donald GW and Hines OJ: CXCR2: A target for pancreatic cancer treatment? Expert Opin Ther Targets. 17:667–680. 2013. View Article : Google Scholar : PubMed/NCBI

38 

Matsuo Y, Campbell PM, Brekken RA, Sung B, Ouellette MM, Fleming JB, Aggarwal BB, Der CJ and Guha S: K-Ras promotes angiogenesis mediated by immortalized human pancreatic epithelial cells through mitogen-activated protein kinase signaling pathways. Mol Cancer Res. 7:799–808. 2009. View Article : Google Scholar : PubMed/NCBI

39 

Pan MR, Hsu MC, Luo CW, Chen LT, Shan YS and Hung WC: The histone methyltransferase G9a as a therapeutic target to override gemcitabine resistance in pancreatic cancer. Oncotarget. 7:61136–61151. 2016. View Article : Google Scholar : PubMed/NCBI

40 

Matsuo Y, Sawai H, Ochi N, Yasuda A, Sakamoto M, Takahashi H, Funahashi H, Takeyama H and Guha S: Proteasome inhibitor MG132 inhibits angiogenesis in pancreatic cancer by blocking NF-kappaB activity. Dig Dis Sci. 55:1167–1176. 2010. View Article : Google Scholar : PubMed/NCBI

41 

Qiao B, Luo W, Liu Y, Wang J, Liu C, Liu Z, Chen S, Gu J, Qi X and Wu T: The prognostic value of CXC chemokine receptor 2 (CXCR2) in cancers: A meta-analysis. Oncotarget. 9:15068–15076. 2017.PubMed/NCBI

42 

Song Y, Baba T, Li YY, Furukawa K, Tanabe Y, Matsugo S, Sasaki S and Mukaida N: Gemcitabine-induced CXCL8 expression counteracts its actions by inducing tumor neovascularization. Biochem Biophys Res Commun. 458:341–346. 2015. View Article : Google Scholar : PubMed/NCBI

43 

Khan MA, Srivastava SK, Bhardwaj A, Singh S, Arora S, Zubair H, Carter JE and Singh AP: Gemcitabine triggers angiogenesis-promoting molecular signals in pancreatic cancer cells: Therapeutic implications. Oncotarget. 6:39140–39150. 2015. View Article : Google Scholar : PubMed/NCBI

44 

Maliandi MV, Mato-Berciano A, Sobrevals L, Roué G, José A and Fillat C: AduPARE1A and gemcitabine combined treatment trigger synergistic antitumor effects in pancreatic cancer through NF-κB mediated uPAR activation. Mol Cancer. 14:1462015. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 41 Issue 6

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Imafuji, H., Matsuo, Y., Ueda, G., Omi, K., Hayashi, Y., Saito, K. ... Takiguchi, S. (2019). Acquisition of gemcitabine resistance enhances angiogenesis via upregulation of IL‑8 production in pancreatic cancer. Oncology Reports, 41, 3508-3516. https://doi.org/10.3892/or.2019.7105
MLA
Imafuji, H., Matsuo, Y., Ueda, G., Omi, K., Hayashi, Y., Saito, K., Tsuboi, K., Morimoto, M., Koide, S., Ogawa, R., Hara, M., Takahashi, H., Takiguchi, S."Acquisition of gemcitabine resistance enhances angiogenesis via upregulation of IL‑8 production in pancreatic cancer". Oncology Reports 41.6 (2019): 3508-3516.
Chicago
Imafuji, H., Matsuo, Y., Ueda, G., Omi, K., Hayashi, Y., Saito, K., Tsuboi, K., Morimoto, M., Koide, S., Ogawa, R., Hara, M., Takahashi, H., Takiguchi, S."Acquisition of gemcitabine resistance enhances angiogenesis via upregulation of IL‑8 production in pancreatic cancer". Oncology Reports 41, no. 6 (2019): 3508-3516. https://doi.org/10.3892/or.2019.7105