Upregulation of LGMNP1 confers radiotherapy resistance in glioblastoma

  • Authors:
    • Hao Xu
    • Binghong Chen
    • Jin Xing
    • Zilong Wei
    • Chaobo Liu
    • Yongming Qiu
    • Yingying Lin
    • Li Ren
  • View Affiliations

  • Published online on: April 18, 2019     https://doi.org/10.3892/or.2019.7128
  • Pages: 3435-3443
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Glioblastoma is a lethal brain tumor type, which is frequently resistant to radiotherapy. The aim of the present study was to explore the function of legumain pseudogene 1 (LGMNP1) on radioresistance in glioblastoma. Reverse transcription‑quantitative PCR was used to detect the relative expression of LGMNP1 in glioma cell lines after radiotherapy. Ectopic expression of LGMNP1 was achieved by transfection of a lentiviral vector. A clonogenic assay was used to determine the colony formation ability following radiotherapy. A comet assay, flow cytometry and western blot analysis were applied to detect DNA damage, the apoptotic rate, and levels of apoptotic proteins, respectively. The results revealed that LGMNP1 was significantly upregulated in glioma cells after radiation. Glioma cells stably overexpressing LGMNP1 were successfully established. Overexpression of LGMNP1 in glioma cells reduced DNA damage processes and the percentage of apoptotic cells after radiotherapy. In addition, overexpression of LGMNP1 in glioblastoma multiforme cells decreased apoptotic protein expression after radiotherapy. The present results indicated that upregulation of LGMNP1 conferred radiotherapy resistance by increasing the ability of DNA damage protection and reducing the apoptotic population in glioma cells.

References

1 

Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P and Ellison DW: The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta neuropathol. 131:803–820. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Ostrom QT, Gittleman H, Farah P, Ondracek A, Chen Y, Wolinsky Y, Stroup NE, Kruchko C and Barnholtz-Sloan JS: CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2006–2010. Neuro Oncol. 15 (Suppl 2):ii1–ii56. 2013. View Article : Google Scholar : PubMed/NCBI

3 

Darefsky AS, King JT Jr and Dubrow R: Adult glioblastoma multiforme survival in the temozolomide era: A population-based analysis of Surveillance, Epidemiology, and End Results registries. Cancer. 118:2163–2172. 2012. View Article : Google Scholar : PubMed/NCBI

4 

Thakkar JP, Dolecek TA, Horbinski C, Ostrom QT, Lightner DD, Barnholtz-Sloan JS and Villano JL: Epidemiologic and molecular prognostic review of glioblastoma. Cancer Epidemiol Biomarkers Prev. 23:1985–1996. 2014. View Article : Google Scholar : PubMed/NCBI

5 

Stupp R, Dietrich PY, Ostermann Kraljevic S, Pica A, Maillard I, Maeder P, Meuli R, Janzer R, Pizzolato G, Miralbell R, et al: Promising survival for patients with newly diagnosed glioblastoma multiforme treated with concomitant radiation plus temozolomide followed by adjuvant temozolomide. J Clin Oncol. 20:1375–1382. 2002. View Article : Google Scholar : PubMed/NCBI

6 

Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, et al: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 352:987–996. 2005. View Article : Google Scholar : PubMed/NCBI

7 

Wind JJ, Young R, Saini A and Sherman JH: The role of adjuvant radiation therapy in the management of high-grade gliomas. Neurosurg Clin N Am. 23247–258. (viii)2012. View Article : Google Scholar : PubMed/NCBI

8 

Caruso C, Carcaterra M and Donato V: Role of radiotherapy for high grade gliomas management. J Neurosurg Sci. 57:163–169. 2013.PubMed/NCBI

9 

Zhen Y, Chunlei G, Wenzhi S, Shuangtao Z, Na L, Rongrong W, Xiaohe L, Haiying N, Dehong L, Shan J, et al: Clinicopathologic significance of legumain overexpression in cancer: A systematic review and meta-analysis. Sci Rep. 5:165992015. View Article : Google Scholar : PubMed/NCBI

10 

Lin Y, Wei C, Liu Y, Qiu Y, Liu C and Guo F: Selective ablation of tumor-associated macrophages suppresses metastasis and angiogenesis. Cancer Sci. 104:1217–1225. 2013. View Article : Google Scholar : PubMed/NCBI

11 

Cancer Genome Atlas Research Network, ; Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA, Ellrott K, Shmulevich I, Sander C, Stuart JM, et al: The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. 45:1113–1120. 2013. View Article : Google Scholar : PubMed/NCBI

12 

Zheng LL, Zhou KR, Liu S, Zhang DY, Wang ZL, Chen ZR, Yang JH and Qu LH: dreamBase: DNA modification, RNA regulation and protein binding of expressed pseudogenes in human health and disease. Nucleic Acids Res. 46:D85–D91. 2018. View Article : Google Scholar : PubMed/NCBI

13 

Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, Naranjo A, Ostberg JR, Blanchard MS, Kilpatrick J, Simpson J, et al: Regression of glioblastoma after chimeric antigen receptor t-cell therapy. N Engl J Med. 375:2561–2569. 2016. View Article : Google Scholar : PubMed/NCBI

14 

Mitchell DA, Batich KA, Gunn MD, Huang MN, Sanchez-Perez L, Nair SK, Congdon KL, Reap EA, Archer GE, Desjardins A, et al: Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. Nature. 519:366–369. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Kaufmann JK and Chiocca EA: Glioma virus therapies between bench and bedside. Neuro Oncol. 16:334–351. 2014. View Article : Google Scholar : PubMed/NCBI

16 

Hottinger AF, Pacheco P and Stupp R: Tumor treating fields: a novel treatment modality and its use in brain tumors. Neuro Oncol. 18:1338–1349. 2016. View Article : Google Scholar : PubMed/NCBI

17 

Stupp R, Taillibert S, Kanner AA, Kesari S, Steinberg DM, Toms SA, Taylor LP, Lieberman F, Silvani A, Fink KL, et al: Maintenance therapy with tumor-treating fields plus temozolomide vs temozolomide alone for glioblastoma: A randomized clinical trial. JAMA. 314:2535–2543. 2015. View Article : Google Scholar : PubMed/NCBI

18 

Ryu S, Buatti JM, Morris A, Kalkanis SN, Ryken TC and Olson JJ; AANS/CNS Joint Guidelines Committee, : The role of radiotherapy in the management of progressive glioblastoma: A systematic review and evidence-based clinical practice guideline. J Neurooncol. 118:489–499. 2014. View Article : Google Scholar : PubMed/NCBI

19 

Lutz ST, Jones J and Chow E: Role of Radiation Therapy in Palliative Care of the Patient With Cancer. J Clin Oncol. 32:2913–2919. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Gallego O: Nonsurgical treatment of recurrent glioblastoma. Curr Oncol. 22:E273–E281. 2015. View Article : Google Scholar : PubMed/NCBI

21 

Arias-Lopez C, Lazaro-Trueba I, Kerr P, Lord CJ, Dexter T, Iravani M, Ashworth A and Silva A: p53 modulates homologous recombination by transcriptional regulation of the RAD51 gene. EMBO Rep. 7:219–224. 2006. View Article : Google Scholar : PubMed/NCBI

22 

Quick QA and Gewirtz DA: An accelerated senescence response to radiation in wild-type p53 glioblastoma multiforme cells. J Neurosurg. 105:111–118. 2006. View Article : Google Scholar : PubMed/NCBI

23 

Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD and Rich JN: Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 444:756–760. 2006. View Article : Google Scholar : PubMed/NCBI

24 

Gorski DH, Beckett MA, Jaskowiak NT, Calvin DP, Mauceri HJ, Salloum RM, Seetharam S, Koons A, Hari DM, Kufe DW, et al: Blockade of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res. 59:3374–3378. 1999.PubMed/NCBI

25 

Geng L, Donnelly E, McMahon G, Lin PC, Sierra-Rivera E, Oshinka H and Hallahan DE: Inhibition of vascular endothelial growth factor receptor signaling leads to reversal of tumor resistance to radiotherapy. Cancer Res. 61:2413–2419. 2001.PubMed/NCBI

26 

Hatanpaa KJ, Burma S, Zhao D and Habib AA: Epidermal growth factor receptor in glioma: Signal transduction, neuropathology, imaging, and radioresistance. Neoplasia. 12:675–684. 2010. View Article : Google Scholar : PubMed/NCBI

27 

Mukherjee B, McEllin B, Camacho CV, Tomimatsu N, Sirasanagandala S, Nannepaga S, Hatanpaa KJ, Mickey B, Madden C, Maher E, et al: EGFRvIII and DNA double-strand break repair: A molecular mechanism for radioresistance in glioblastoma. Cancer Res. 69:4252–4259. 2009. View Article : Google Scholar : PubMed/NCBI

28 

Liccardi G, Hartley JA and Hochhauser D: Importance of EGFR/ERCC1 interaction following radiation-induced DNA damage. Clin Cancer Res. 20:3496–3506. 2014. View Article : Google Scholar : PubMed/NCBI

29 

Zhang M, Kleber S, Roehrich M, Timke C, Han N, Tuettenberg J, Martin-Villalba A, Debus J, Peschke P, Wirkner U, et al: Blockade of TGF-β signaling by the TGFβ R-I kinase inhibitor LY2109761 enhances radiation response and prolongs survival in glioblastoma. Cancer Res. 71:7155–7167. 2011. View Article : Google Scholar : PubMed/NCBI

30 

Dungey FA, Caldecott KW and Chalmers AJ: Enhanced radiosensitization of human glioma cells by combining inhibition of poly(ADP-ribose) polymerase with inhibition of heat shock protein 90. Mol Cancer Ther. 8:2243–2254. 2009. View Article : Google Scholar : PubMed/NCBI

31 

Wu M, Shao GR, Zhang FX, Wu WX, Xu P and Ruan ZM: Legumain protein as a potential predictive biomarker for Asian patients with breast carcinoma. Asian Pac J Cancer Prev. 15:10773–10777. 2014. View Article : Google Scholar : PubMed/NCBI

32 

Haugen MH, Boye K, Nesland JM, Pettersen SJ, Egeland EV, Tamhane T, Brix K, Maelandsmo GM and Flatmark K: High expression of the cysteine proteinase legumain in colorectal cancer-implications for therapeutic targeting. Eur J Cancer. 51:9–17. 2015. View Article : Google Scholar : PubMed/NCBI

33 

Guo P, Zhu Z, Sun Z, Wang Z, Zheng X and Xu H: Expression of legumain correlates with prognosis and metastasis in gastric carcinoma. PLoS One. 8:e730902013. View Article : Google Scholar : PubMed/NCBI

34 

Zhu Q, Tang M and Wang X: The expression of asparaginyl endopeptidase promotes growth potential in epithelial ovarian cancer. Cancer Biol Ther. 18:222–228. 2017. View Article : Google Scholar : PubMed/NCBI

35 

Zhu W, Shao Y, Yang M, Jia M and Peng Y: Asparaginyl endopeptidase promotes proliferation and invasiveness of prostate cancer cells via PI3K/AKT signaling pathway. Gene. 594:176–182. 2016. View Article : Google Scholar : PubMed/NCBI

36 

Meng F and Liu W: Knockdown of legumain suppresses cervical cancer cell migration and invasion. Oncol Res. 23:7–12. 2016. View Article : Google Scholar

37 

Kalyana-Sundaram S, Kumar-Sinha C, Shankar S, Robinson DR, Wu YM, Cao X, Asangani IA, Kothari V, Prensner JR, Lonigro RJ, et al: Expressed pseudogenes in the transcriptional landscape of human cancers. Cell. 149:1622–1634. 2012. View Article : Google Scholar : PubMed/NCBI

38 

Johnsson P, Ackley A, Vidarsdottir L, Lui WO, Corcoran M, Grandér D and Morris KV: A pseudogene long-noncoding-RNA network regulates PTEN transcription and translation in human cells. Nat Struct Mol Biol. 20:440–446. 2013. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 41 Issue 6

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Xu, H., Chen, B., Xing, J., Wei, Z., Liu, C., Qiu, Y. ... Ren, L. (2019). Upregulation of LGMNP1 confers radiotherapy resistance in glioblastoma. Oncology Reports, 41, 3435-3443. https://doi.org/10.3892/or.2019.7128
MLA
Xu, H., Chen, B., Xing, J., Wei, Z., Liu, C., Qiu, Y., Lin, Y., Ren, L."Upregulation of LGMNP1 confers radiotherapy resistance in glioblastoma". Oncology Reports 41.6 (2019): 3435-3443.
Chicago
Xu, H., Chen, B., Xing, J., Wei, Z., Liu, C., Qiu, Y., Lin, Y., Ren, L."Upregulation of LGMNP1 confers radiotherapy resistance in glioblastoma". Oncology Reports 41, no. 6 (2019): 3435-3443. https://doi.org/10.3892/or.2019.7128