TRPC5‑induced autophagy promotes the TMZ‑resistance of glioma cells via the CAMMKβ/AMPKα/mTOR pathway

  • Authors:
    • Yan Zou
    • Mu Chen
    • Shuai Zhang
    • Zeng'li Miao
    • Jing Wang
    • Xiao'jie Lu
    • Xu'dong Zhao
  • View Affiliations

  • Published online on: April 2, 2019     https://doi.org/10.3892/or.2019.7095
  • Pages: 3413-3423
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Temozolomide (TMZ) is the first choice chemotherapy agent against glioblastoma, but the TMZ chemotherapy resistance has restricted the clinical application. Although autophagy is considered an adaptive response for cell survival under the pressure of chemotherapy and associated with chemotherapy resistance, its initiator and the precise molecular mechanism remains unknown. In the present study, it was determined that TMZ increases the transient receptor potential cation channel subfamily C member 5 (TRPC5) protein expression and the basal autophagy level, and the upregulation of autophagy is mediated by TRPC5 in glioma cells. Additionally, knockdown of TRPC5 upregulated the chemotherapy sensitivity in vitro and in vivo. Furthermore, TRPC5‑small interfering RNA and pharmacological inhibition indicated that the Ca2+/calmodulin dependent protein kinase β (CaMKKβ)/AMP‑activated protein kinase α (AMPKα)/mechanistic target of rapamycin kinase (mTOR) pathway mediates cell survival autophagy during TMZ treatment. In addition, TMZ‑resistant U87/TMZ cells retained a high basal autophagy level, while silence of TRPC5 expression or inhibition of autophagy reversed TMZ resistance. Thus, the present study revealed that TRPC5, an initiator of autophagy, upregulated TMZ resistance via the CaMKKβ/AMPKα/mTOR pathway and this indicated a novel therapeutic site for drug resistance in glioma chemotherapy.

References

1 

Towner RA, Smith N, Saunders D, Brown CA, Cai X, Ziegler J, Mallory S, Dozmorov MG, Coutinho De Souza P, et al: OKN-007 Increases temozolomide (TMZ) sensitivity and suppresses TMZ-resistant glioblastoma (GBM) tumor growth. Transl Onco. 12:320–335. 2019. View Article : Google Scholar

2 

Ostrom QT, Gittleman H, Liao P, Vecchione-Koval T, Wolinsky Y, Kruchko C and Barnholtz-Sloan JS: CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2010–2014. Neuro Oncol. 19 (Suppl 5):v1–v88. 2017. View Article : Google Scholar : PubMed/NCBI

3 

Lai SW, Huang BR, Liu YS, Lin HY, Chen CC, Tsai CF, Lu DY and Lin C: Differential characterization of temozolomide-resistant human glioma cells. Int J Mol Sci. 19(pii): E1272018. View Article : Google Scholar : PubMed/NCBI

4 

Kunjachan S, Rychlik B, Storm G, Kiessling F and Lammers T: Multidrug resistance: Physiological principles and nanomedical solutions. Adv Drug Deliv Rev. 65:1852–1865. 2013. View Article : Google Scholar : PubMed/NCBI

5 

Chen C, Hanson E, Watson JW and Lee JS: P-glycoprotein limits the brain penetration of nonsedating but not sedating H1-antagonists. Drug Metab Dispos. 31:312–318. 2003. View Article : Google Scholar : PubMed/NCBI

6 

Gottesman MM: Mechanisms of cancer drug resistance. Annu Rev Med. 53:615–627. 2002. View Article : Google Scholar : PubMed/NCBI

7 

Minchinton AI and Tannock IF: Drug penetration in solid tumours. Nat Rev Cancer. 6:583–592. 2006. View Article : Google Scholar : PubMed/NCBI

8 

Rebucci M and Michiels C: Molecular aspects of cancer cell resistance to chemotherapy. Biochem Pharmacol. 85:1219–1226. 2013. View Article : Google Scholar : PubMed/NCBI

9 

Kiselyov K, van Rossum DB and Patterson RL: TRPC channels in pheromone sensing. Vitam Horm. 83:197–213. 2010. View Article : Google Scholar : PubMed/NCBI

10 

Lehen'kyi V and Prevarskaya N: Oncogenic TRP channels. Adv Exp Med Biol. 704:929–945. 2011. View Article : Google Scholar : PubMed/NCBI

11 

Zholos AV: TRPC5. Handb Exp Pharmacol. 222:129–156. 2014. View Article : Google Scholar : PubMed/NCBI

12 

Hong C, Seo H, Kwak M, Jeon J, Jang J, Jeong EM, Myeong J, Hwang YJ, Ha K, Kang MJ, et al: Increased TRPC5 glutathionylation contributes to striatal neuron loss in Huntington's disease. Brain. 138:3030–3047. 2015. View Article : Google Scholar : PubMed/NCBI

13 

Liu Y, Xu Y, Thilo F, Friis UG, Jensen BL, Scholze A, Zheng J and Tepel M: Erythropoietin increases expression and function of transient receptor potential canonical 5 channels. Hypertension. 58:317–324. 2011. View Article : Google Scholar : PubMed/NCBI

14 

Everett KV, Chioza BA, Georgoula C, Reece A, Gardiner RM and Chung EM: Infantile hypertrophic pyloric stenosis: Evaluation of three positional candidate genes, TRPC1, TRPC5 and TRPC6, by association analysis and re-sequen. Hum Genet. 126:819–831. 2009. View Article : Google Scholar : PubMed/NCBI

15 

Ma X, Cai Y, He D, Zou C, Zhang P, Lo CY, Xu Z, Chan FL, Yu S, Chen Y, et al: Transient receptor potential channel TRPC5 is essential for P-glycoprotein induction in drug-resistant cancer cells. Proc Natl Acad Sci USA. 109:16282–16287. 2012. View Article : Google Scholar : PubMed/NCBI

16 

Zhang P, Liu X, Li H, Chen Z, Yao X, Jin J and Ma X: TRPC5-induced autophagy promotes drug resistance in breast carcinoma via CaMKKβ/AMPKα/mTOR pathway. Sci Rep. 7:31582017. View Article : Google Scholar : PubMed/NCBI

17 

Mizushima N and Komatsu M: Autophagy: Renovation of cells and tissues. Cell. 147:728–741. 2011. View Article : Google Scholar : PubMed/NCBI

18 

Lamark T, Svenning S and Johansen T: Regulation of selective autophagy: The p62/SQSTM1 paradigm. Essays Biochem. 61:609–624. 2017. View Article : Google Scholar : PubMed/NCBI

19 

Yang Z and Klionsky DJ: Eaten alive: A history of macroautophagy. Nat Cell Biol. 12:814–822. 2010. View Article : Google Scholar : PubMed/NCBI

20 

Kroemer G, Mariño G and Levine B: Autophagy and the integrated stress response. Mol Cell. 40:280–293. 2010. View Article : Google Scholar : PubMed/NCBI

21 

Yorimitsu T and Klionsky DJ: Autophagy: Molecular machinery for self-eating. Cell Death Differ. 12 (Suppl 2):S1542–S1552. 2005. View Article : Google Scholar

22 

Mizushima N, Levine B, Cuervo AM and Klionsky DJ: Autophagy fights disease through cellular self-digestion. Nature. 451:1069–1075. 2008. View Article : Google Scholar : PubMed/NCBI

23 

Jin S and White E: Role of autophagy in cancer: Management of metabolic stress. Autophagy. 3:28–31. 2007. View Article : Google Scholar : PubMed/NCBI

24 

Levine B: Unraveling the role of autophagy in cancer. Autophagy. 2:65–66. 2006. View Article : Google Scholar : PubMed/NCBI

25 

Kondo Y, Kanzawa T, Sawaya R and Kondo S: The role of autophagy in cancer development and response to therapy. Nat Rev Cancer. 5:726–734. 2005. View Article : Google Scholar : PubMed/NCBI

26 

Gozuacik D and Kimchi A: Autophagy as a cell death and tumor suppressor mechanism. Oncogene. 23:2891–2906. 2004. View Article : Google Scholar : PubMed/NCBI

27 

Jin S and White E: Tumor suppression by autophagy through the management of metabolic stress. Autophagy. 4:563–566. 2008. View Article : Google Scholar :

28 

Xie CM, Liu XY, Sham KW, Lai JM and Cheng CH: Silencing of EEF2K (eukaryotic elongation factor-2 kinase) reveals AMPK-ULK1-dependent autophagy in colon cancer cells. Autophagy. 10:1495–1508. 2014. View Article : Google Scholar : PubMed/NCBI

29 

Eisenberg-Lerner A, Bialik S, Simon HU and Kimchi A: Life and death partners: Apoptosis, autophagy and the cross-talk between them. Cell Death Differ. 16:966–975. 2009. View Article : Google Scholar : PubMed/NCBI

30 

Cao L, Walker MP, Vaidya NK, Fu M, Kumar S and Kumar A: Cocaine-mediated autophagy in astrocytes involves sigma 1 receptor, PI3K, mTOR, Atg5/7, Beclin-1 and induces type II programed cell death. Mol Neurobiol. 53:4417–4430. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Gozuacik D and Kimchi A: Autophagy and cell death. Curr Top Dev Biol. 78:217–245. 2007. View Article : Google Scholar : PubMed/NCBI

32 

Li W, Zhou Y, Yang J, Li H, Zhang H and Zheng P: Curcumin induces apoptotic cell death and protective autophagy in human gastric cancer cells. Oncol Rep. 37:3459–3466. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Guo Y and Pei X: Tetrandrine-induced autophagy in MDA- MB-231 triple-negative breast cancer cell through the inhibition of PI3K/AKT/mTOR signaling. Evid Based Complement Alternat Med. 2019:75174312019. View Article : Google Scholar : PubMed/NCBI

34 

Sun WL, Chen J, Wang YP and Zheng H: Autophagy protects breast cancer cells from epirubicin-induced apoptosis and facilitates epirubicin-resistance development. Autophagy. 7:1035–1044. 2011. View Article : Google Scholar : PubMed/NCBI

35 

Chittaranjan S, Bortnik S, Dragowska WH, Xu J, Abeysundara N, Leung A, Go NE, DeVorkin L, Weppler SA, Gelmon K, et al: Autophagy inhibition augments the anticancer effects of epirubicin treatment in anthracycline-sensitive and -resistant triple-negative breast cancer. Clin Cancer Res. 20:3159–3173. 2014. View Article : Google Scholar : PubMed/NCBI

36 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

37 

Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, Adachi H, Adams CM, Adams PD, Adeli K, et al: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 12:1–222. 2016. View Article : Google Scholar : PubMed/NCBI

38 

Kim J, Kundu M, Viollet B and Guan KL: AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 13:132–141. 2011. View Article : Google Scholar : PubMed/NCBI

39 

Takeuchi M and Yamamoto T: Apoptosis induced by NAD depletion is inhibited by KN-93 in a CaMKII-independent manner. Exp Cell Res. 335:62–67. 2015. View Article : Google Scholar : PubMed/NCBI

40 

Dasgupta B and Seibel W: Compound C/dorsomorphin: Its use and misuse as an AMPK inhibitor. Methods Mol Biol. 1732:195–202. 2018. View Article : Google Scholar : PubMed/NCBI

41 

Chen X, Zhang M, Gan H, Lee JH, Fang D, Kitange GJ, He L, Hu Z, Parney IF, Meyer FB, et al: A novel enhancer regulates MGMT expression and promotes temozolomide resistance in glioblastoma. Nat Commun. 9:29492018. View Article : Google Scholar : PubMed/NCBI

42 

Goldar S, Khaniani MS, Derakhshan SM and Baradaran B: Molecular mechanisms of apoptosis and roles in cancer development and treatment. Asian Pac J Cancer Prev. 16:2129–2144. 2015. View Article : Google Scholar : PubMed/NCBI

43 

Si W, Shen J, Zheng H and Fan W: The role and mechanisms of action of microRNAs in cancer drug resistance. Clin Epigenetics. 11:252019. View Article : Google Scholar : PubMed/NCBI

44 

Shintani T and Klionsky DJ: Autophagy in health and disease: A double-edged sword. Science. 306:990–995. 2004. View Article : Google Scholar : PubMed/NCBI

45 

Xie Z and Klionsky DJ: Autophagosome formation: Core machinery and adaptations. Nat Cell Biol. 9:1102–1109. 2007. View Article : Google Scholar : PubMed/NCBI

46 

Düzen IV, Yavuz F, Vuruskan E, Saracoglu E, Poyraz F, Göksülük H, Candemir B and Demiryürek S: Leukocyte TRP channel gene expressions in patients with non-valvular atrial fibrillation. Sci Rep. 7:92722017. View Article : Google Scholar : PubMed/NCBI

47 

Jennings JJ Jr, Zhu JH, Rbaibi Y, Luo X, Chu CT and Kiselyov K: Mitochondrial aberrations in mucolipidosis Type IV. J Biol Chem. 281:39041–39050. 2006. View Article : Google Scholar : PubMed/NCBI

48 

Curcio-Morelli C, Charles FA, Micsenyi MC, Cao Y, Venugopal B, Browning MF, Dobrenis K, Cotman SL, Walkley SU and Slaugenhaupt SA: Macroautophagy is defective in mucolipin-1-deficient mouse neurons. Neurobiol Dis. 40:370–377. 2010. View Article : Google Scholar : PubMed/NCBI

49 

Vergarajauregui S, Connelly PS, Daniels MP and Puertollano R: Autophagic dysfunction in mucolipidosis type IV patients. Hum Mol Genet. 17:2723–2737. 2008. View Article : Google Scholar : PubMed/NCBI

50 

Soyombo AA, Tjon-Kon-Sang S, Rbaibi Y, Bashllari E, Bisceglia J, Muallem S and Kiselyov K: TRP-ML1 regulates lysosomal pH and acidic lysosomal lipid hydrolytic activity. J Biol Chem. 281:7294–7301. 2006. View Article : Google Scholar : PubMed/NCBI

51 

Farfariello V, Amantini C and Santoni G: Transient receptor potential vanilloid 1 activation induces autophagy in thymocytes through ROS-regulated AMPK and Atg4C pathways. J Leukoc Biol. 92:421–431. 2012. View Article : Google Scholar : PubMed/NCBI

52 

Sukumaran P, Sun Y, Vyas M and Singh BB: TRPC1-mediated Ca2+ entry is essential for the regulation of hypoxia and nutrient depletion-dependent autophagy. Cell Death Dis. 6:e16742015. View Article : Google Scholar : PubMed/NCBI

53 

Oh HG, Chun YS, Park CS, Kim TW, Park MK and Chung S: Regulation of basal autophagy by transient receptor potential melastatin 7 (TRPM7) channel. Biochem Biophys Res Commun. 463:7–12. 2015. View Article : Google Scholar : PubMed/NCBI

54 

Almasi S, Kennedy BE, El-Aghil M, Sterea AM, Gujar S, Partida-Sánchez S and El Hiani Y: TRPM2 channel-mediated regulation of autophagy maintains mitochondrial function and promotes gastric cancer cell survival via the JNK-signaling pathway. J Biol Chem. 293:3637–3650. 2018. View Article : Google Scholar : PubMed/NCBI

55 

Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S, Natsume T, Takehana K, Yamada N, et al: Nutrient- dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell. 20:1981–1991. 2009. View Article : Google Scholar : PubMed/NCBI

56 

Behrends C, Sowa ME, Gygi SP and Harper JW: Network organization of the human autophagy system. Nature. 466:68–76. 2010. View Article : Google Scholar : PubMed/NCBI

57 

Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, DePinho RA and Cantley LC: The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer cell. 6:91–99. 2004. View Article : Google Scholar : PubMed/NCBI

58 

Bort A, Sánchez BG, Spínola E, Mateos-Gómez PA, Rodriguez- Henche N and Diaz-Laviada I: The red pepper's spicy ingredient capsaicin activates AMPK in HepG2 cells through CaMKKβ. PLoS One. 14:e02114202019. View Article : Google Scholar : PubMed/NCBI

59 

Yoshida T, Inoue R, Morii T, Takahashi N, Yamamoto S, Hara Y, Tominaga M, Shimizu S, Sato Y and Mori Y: Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat Chem Biol. 2:596–607. 2006. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 41 Issue 6

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Zou, Y., Chen, M., Zhang, S., Miao, Z., Wang, J., Lu, X., & Zhao, X. (2019). TRPC5‑induced autophagy promotes the TMZ‑resistance of glioma cells via the CAMMKβ/AMPKα/mTOR pathway. Oncology Reports, 41, 3413-3423. https://doi.org/10.3892/or.2019.7095
MLA
Zou, Y., Chen, M., Zhang, S., Miao, Z., Wang, J., Lu, X., Zhao, X."TRPC5‑induced autophagy promotes the TMZ‑resistance of glioma cells via the CAMMKβ/AMPKα/mTOR pathway". Oncology Reports 41.6 (2019): 3413-3423.
Chicago
Zou, Y., Chen, M., Zhang, S., Miao, Z., Wang, J., Lu, X., Zhao, X."TRPC5‑induced autophagy promotes the TMZ‑resistance of glioma cells via the CAMMKβ/AMPKα/mTOR pathway". Oncology Reports 41, no. 6 (2019): 3413-3423. https://doi.org/10.3892/or.2019.7095