Synergistic effect of arsenic trioxide, vismodegib and temozolomide on glioblastoma

  • Authors:
    • Costansia Bureta
    • Yoshinobu Saitoh
    • Hiroto Tokumoto
    • Hiromi Sasaki
    • Shingo Maeda
    • Satoshi Nagano
    • Setsuro Komiya
    • Noboru Taniguchi
    • Takao Setoguchi
  • View Affiliations

  • Published online on: April 4, 2019     https://doi.org/10.3892/or.2019.7100
  • Pages: 3404-3412
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The treatment of glioblastoma is a critical health issue, owing to its resistance to chemotherapy. The current standard of treatment is surgical resection, followed by adjuvant radiotherapy and temozolomide treatment. Long‑term local treatment of glioblastoma is rarely achieved and the majority of the patients undergo relapse. Resistance to temozolomide emerges from numerous signalling pathways that are altered in glioblastoma, including the Hedgehog signalling pathway. Hence, further research is required to identify effective treatment modalities. We investigated the effect of vismodegib, arsenic trioxide and temozolomide on glioblastoma in vitro and in vivo to apply our findings to the clinical setting. WST‑1 assay revealed that glioblastoma proliferation was inhibited following treatment with these drugs either in single or in combination; this synergistic effect was confirmed by CalcuSyn software. Western blot analysis revealed an increase in the expression of cleaved caspase‑3 and γH2AX. Furthermore, there was marked inhibition and decreased tumour growth in mice that received combination therapy, unlike those that received single agent or vehicle treatment. Our results revealed that the combination of arsenic trioxide/vismodegib and temozolomide may be an attractive therapeutic method for the treatment of glioblastoma.

References

1 

Stupp R, Tonn JC, Brada M and Pentheroudakis G; ESMO Guidelines Working Group, : High-grade malignant glioma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 21 (Suppl 5):v190–v193. 2010. View Article : Google Scholar : PubMed/NCBI

2 

Schwartzbaum JA, Fisher JL, Aldape KD and Wrensch M: Epidemiology and molecular pathology of glioma. Nat Clin Pract Neurol. 2:494–503. 2006. View Article : Google Scholar : PubMed/NCBI

3 

Scorsetti M, Navarria P, Pessina F, Ascolese AM, D'Agostino G, Tomatis S, De Rose F, Villa E, Maggi G, Simonelli M, et al: Multimodality therapy approaches, local and systemic treatment, compared with chemotherapy alone in recurrent glioblastoma. BMC Cancer. 15:4862015. View Article : Google Scholar : PubMed/NCBI

4 

Newlands ES, Stevens MF, Wedge SR, Wheelhouse RT and Brock C: Temozolomide: A review of its discovery, chemical properties, pre-clinical development and clinical trials. Cancer Treat Rev. 23:35–61. 1997. View Article : Google Scholar : PubMed/NCBI

5 

Brock CS, Newlands ES, Wedge SR, Bower M, Evans H, Colquhoun I, Roddie M, Glaser M, Brampton MH and Rustin GJ: Phase I trial of temozolomide using an extended continuous oral schedule. Cancer Res. 58:4363–4367. 1998.PubMed/NCBI

6 

Tolcher AW, Gerson SL, Denis L, Geyer C, Hammond LA, Patnaik A, Goetz AD, Schwartz G, Edwards T, Reyderman L, et al: Marked inactivation of O6-alkylguanine-DNA alkyltransferase activity with protracted temozolomide schedules. Br J Cancer. 88:1004–1011. 2003. View Article : Google Scholar : PubMed/NCBI

7 

Amakye D, Jagani Z and Dorsch M: Unraveling the therapeutic potential of the Hedgehog pathway in cancer. Nat Med. 19:1410–1422. 2013. View Article : Google Scholar : PubMed/NCBI

8 

Wang K, Chen D, Qian Z, Cui D, Gao L and Lou M: Hedgehog/Gli1 signaling pathway regulates MGMT expression and chemoresistance to temozolomide in human glioblastoma. Cancer Cell Int. 17:1172017. View Article : Google Scholar : PubMed/NCBI

9 

Santoni M, Burattini L, Nabissi M, Morelli MB, Berardi R, Santoni G and Cascinu S: Essential role of Gli proteins in glioblastoma multiforme. Curr Protein Pept Sci. 14:133–140. 2013. View Article : Google Scholar : PubMed/NCBI

10 

Beauchamp EM, Ringer L, Bulut G, Sajwan KP, Hall MD, Lee YC, Peaceman D, Özdemirli M, Rodriguez O, Macdonald TJ, et al: Arsenic trioxide inhibits human cancer cell growth and tumor development in mice by blocking Hedgehog/GLI pathway. J Clin Invest. 121:148–160. 2011. View Article : Google Scholar : PubMed/NCBI

11 

Yang D, Cao F, Ye X, Zhao H, Liu X, Li Y, Shi C, Wang H and Zhou J: Arsenic trioxide inhibits the hedgehog pathway which is aberrantly activated in acute promyelocytic leukemia. Acta Haematol. 130:260–267. 2013. View Article : Google Scholar : PubMed/NCBI

12 

Breccia M and Lo-Coco F: Arsenic trioxide for management of acute promyelocytic leukemia: Current evidence on its role in front-line therapy and recurrent disease. Expert Opin Pharmacother. 13:1031–1043. 2012. View Article : Google Scholar : PubMed/NCBI

13 

Yang J, Li H, Chen YY, Wang XJ, Shi GY, Hu QS, Kang XL, Lu Y, Tang XM, Guo QS and Yi J: Anthraquinones sensitize tumor cells to arsenic cytotoxicity in vitro and in vivo via reactive oxygen species-mediated dual regulation of apoptosis. Free Radic Biol Med. 37:2027–2041. 2004. View Article : Google Scholar : PubMed/NCBI

14 

Pettersson HM, Pietras A, Munksgaard Persson M, Karlsson J, Johansson L, Shoshan MC and Påhlman S: Arsenic trioxide is highly cytotoxic to small cell lung carcinoma cells. Mol Cancer Ther. 8:160–170. 2009. View Article : Google Scholar : PubMed/NCBI

15 

Ma Y, Wang J, Liu L, Zhu H, Chen X, Pan S, Sun X and Jiang H: Genistein potentiates the effect of arsenic trioxide against human hepatocellular carcinoma: Role of Akt and nuclear factor-κB. Cancer Lett. 301:75–84. 2011. View Article : Google Scholar : PubMed/NCBI

16 

Yu J, Qian H, Li Y, Wang Y, Zhang X, Liang X, Fu M and Lin C: Arsenic trioxide (As2O3) reduces the invasive and metastatic properties of cervical cancer cells in vitro and in vivo. Gynecol Oncol. 106:400–406. 2007. View Article : Google Scholar : PubMed/NCBI

17 

Maeda H, Hori S, Nishitoh H, Ichijo H, Ogawa O, Kakehi Y and Kakizuka A: Tumor growth inhibition by Arsenic Trioxide (As2O3) in the orthotopic metastasis model of Androgen-independent prostate cancer. Cancer Res. 61:5432–5440. 2001.PubMed/NCBI

18 

Nakamura S, Nagano S, Nagao H, Ishidou Y, Yokouchi M, Abematsu M, Yamamoto T, Komiya S and Setoguchi T: Arsenic trioxide prevents osteosarcoma growth by inhibition of GLI transcription via DNA damage accumulation. PLoS One. 8:e694662013. View Article : Google Scholar : PubMed/NCBI

19 

Subbarayan PR and Ardalan B: In the war against solid tumors arsenic trioxide needs partners. J Gastrointest Cancer. 45:363–371. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Murgo AJ: Clinical trials of arsenic trioxide in hematologic and solid tumors: Overview of the national cancer institute cooperative research and development studies. Oncologist. 6 (Suppl 2):S22–S28. 2001. View Article : Google Scholar

21 

Meiss F and Zeiser R: Vismodegib. Recent Results Cancer Res. 201:405–417. 2014. View Article : Google Scholar : PubMed/NCBI

22 

Nagao-Kitamoto H, Nagata M, Nagano S, Kitamoto S, Ishidou Y, Yamamoto T, Nakamura S, Tsuru A, Abematsu M, Fujimoto Y, et al: GLI2 is a novel therapeutic target for metastasis of osteosarcoma. Int J Cancer. 136:1276–1284. 2015. View Article : Google Scholar : PubMed/NCBI

23 

Mazzucchelli S, Truffi M, Baccarini F, Beretta M, Sorrentino L, Bellini M, Rizzuto MA, Ottria R, Ravelli A, Ciuffreda P, et al: H-Ferritin-nanocaged olaparib: A promising choice for both BRCA-mutated and sporadic triple negative breast cancer. Sci Rep. 7:75052017. View Article : Google Scholar : PubMed/NCBI

24 

Kumar S, Eroglu E, Stokes JA III, Scissum-Gunn K, Saldanha SN, Singh UP, Manne U, Ponnazhagan S and Mishra MK: Resveratrol induces mitochondria-mediated, caspase-independent apoptosis in murine prostate cancer cells. Oncotarget. 8:20895–20908. 2017. View Article : Google Scholar : PubMed/NCBI

25 

Wen W, Zhu F, Zhang J, Keum YS, Zykova T, Yao K, Peng C, Zheng D, Cho YY, Ma WY, et al: MST1 promotes apoptosis through phosphorylation of histone H2AX. J Biol Chem. 285:39108–39116. 2010. View Article : Google Scholar : PubMed/NCBI

26 

Zhu J, Cai Y, Xu K, Ren X, Sun J, Lu S, Chen J and Xu P: Beclin1 overexpression suppresses tumor cell proliferation and survival via an autophagydependent pathway in human synovial sarcoma cells. Oncol Rep. 40:1927–1936. 2018.PubMed/NCBI

27 

Saitoh Y, Setoguchi T, Nagata M, Tsuru A, Nakamura S, Nagano S, Ishidou Y, Nagao-Kitamoto H, Yokouchi M, Maeda S, et al: Combination of Hedgehog inhibitors and standard anticancer agents synergistically prevent osteosarcoma growth. Int J Oncol. 48:235–242. 2016. View Article : Google Scholar : PubMed/NCBI

28 

Lin CJ, Lee CC, Shih YL, Lin TY, Wang SH, Lin YF and Shih CM: Resveratrol enhances the therapeutic effect of temozolomide against malignant glioma in vitro and in vivo by inhibiting autophagy. Free Radic Biol Med. 52:377–391. 2012. View Article : Google Scholar : PubMed/NCBI

29 

Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani L, et al: MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 352:997–1003. 2005. View Article : Google Scholar : PubMed/NCBI

30 

Dosch J, Christmann M and Kaina B: Mismatch G-T binding activity and MSH2 expression is quantitatively related to sensitivity of cells to methylating agents. Carcinogenesis. 19:567–573. 1998. View Article : Google Scholar : PubMed/NCBI

31 

Yip S, Miao J, Cahill DP, Iafrate AJ, Aldape K, Nutt CL and Louis DN: MSH6 mutations arise in glioblastomas during temozolomide therapy and mediate temozolomide resistance. Clin Cancer Res. 15:4622–4629. 2009. View Article : Google Scholar : PubMed/NCBI

32 

Yoon JW, Gilbertson R, Iannaccone S, Iannaccone P and Walterhouse D: Defining a role for Sonic hedgehog pathway activation in desmoplastic medulloblastoma by identifying GLI1 target genes. Int J Cancer. 124:109–119. 2009. View Article : Google Scholar : PubMed/NCBI

33 

Ulasov IV, Nandi S, Dey M, Sonabend AM and Lesniak MS: Inhibition of sonic hedgehog and notch pathways enhances sensitivity of CD133+ glioma stem cells to temozolomide therapy. Mol Med. 17:103–112. 2011. View Article : Google Scholar : PubMed/NCBI

34 

Nasr R, Guillemin MC, Ferhi O, Soilihi H, Peres L, Berthier C, Rousselot P, Robledo-Sarmiento M, Lallemand-Breitenbach V, Gourmel B, et al: Eradication of acute promyelocytic leukemia-initiating cells through PML-RARA degradation. Nat Med. 14:1333–1342. 2008. View Article : Google Scholar : PubMed/NCBI

35 

Kim J, Lee JJ, Kim J, Gardner D and Beachy PA: Arsenic antagonizes the Hedgehog pathway by preventing ciliary accumulation and reducing stability of the Gli2 transcriptional effector. Proc Natl Acad Sci USA. 107:13432–13437. 2010. View Article : Google Scholar : PubMed/NCBI

36 

Sekulic A, Migden MR, Oro AE, Dirix L, Lewis KD, Hainsworth JD, Solomon JA, Yoo S, Arron ST, Friedlander PA, et al: Efficacy and safety of vismodegib in advanced basal-cell carcinoma. N Engl J Med. 366:2171–2179. 2012. View Article : Google Scholar : PubMed/NCBI

37 

Gould SE, Low JA, Marsters JC Jr, Robarge K, Rubin LL, de Sauvage FJ, Sutherlin DP, Wong H and Yauch RL: Discovery and preclinical development of vismodegib. Expert Opin Drug Discov. 9:969–984. 2014. View Article : Google Scholar : PubMed/NCBI

38 

Chang AL, Solomon JA, Hainsworth JD, Goldberg L, McKenna E, Day BM, Chen DM and Weiss GJ: Expanded access study of patients with advanced basal cell carcinoma treated with the Hedgehog pathway inhibitor, vismodegib. J Am Acad Dermatol. 70:60–69. 2014. View Article : Google Scholar : PubMed/NCBI

39 

Tomita A, Kiyoi H and Naoe T: Mechanisms of action and resistance to all-trans retinoic acid (ATRA) and arsenic trioxide (As2O3) in acute promyelocytic leukemia. Int J Hematol. 97:717–725. 2013. View Article : Google Scholar : PubMed/NCBI

40 

Pricl S, Cortelazzi B, Dal Col V, Marson D, Laurini E, Fermeglia M, Licitra L, Pilotti S, Bossi P and Perrone F: Smoothened (SMO) receptor mutations dictate resistance to vismodegib in basal cell carcinoma. Mol Oncol. 9:389–397. 2015. View Article : Google Scholar : PubMed/NCBI

41 

Lee PC, Kakadiya R, Su TL and Lee TC: Combination of bifunctional alkylating agent and arsenic trioxide synergistically suppresses the growth of drug-resistant tumor cells. Neoplasia. 12:376–387. 2010. View Article : Google Scholar : PubMed/NCBI

42 

Melamed JR, Morgan JT, Ioele SA, Gleghorn JP, Sims-Mourtada J and Day ES: Investigating the role of Hedgehog/GLI1 signaling in glioblastoma cell response to temozolomide. Oncotarget. 9:27000–27015. 2018. View Article : Google Scholar : PubMed/NCBI

43 

Chou TC: Drug Combination studies and their synergy quantification using the chou-talalay method. Cancer Res. 70:440–446. 2010. View Article : Google Scholar : PubMed/NCBI

44 

Chou TC and Talalay P: Quantitative analysis of dose-effect relationships: The combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul. 22:27–55. 1984. View Article : Google Scholar : PubMed/NCBI

45 

Alves TR, Lima FR, Kahn SA, Lobo D, Dubois LG, Soletti R, Borges H and Neto VM: Glioblastoma cells: A heterogeneous and fatal tumor interacting with the parenchyma. Life Sci. 89:532–539. 2011. View Article : Google Scholar : PubMed/NCBI

46 

McDonald K, Joshi S, Jue TR, Yin J and Khasraw M: ATPS-54genomically Unstable Glioblastoma (U-GBM) show exquisite sensitivity to parp inhibition. Neuro Oncol. 17:v302015. View Article : Google Scholar :

47 

Shou Y, Robinson DM, Amakye DD, Rose KL, Cho YJ, Ligon KL, Sharp T, Haider AS, Bandaru R, Ando Y, et al: A five-gene hedgehog signature developed as a patient preselection tool for hedgehog inhibitor therapy in medulloblastoma. Clin Cancer Res. 21:585–593. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 41 Issue 6

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Bureta, C., Saitoh, Y., Tokumoto, H., Sasaki, H., Maeda, S., Nagano, S. ... Setoguchi, T. (2019). Synergistic effect of arsenic trioxide, vismodegib and temozolomide on glioblastoma. Oncology Reports, 41, 3404-3412. https://doi.org/10.3892/or.2019.7100
MLA
Bureta, C., Saitoh, Y., Tokumoto, H., Sasaki, H., Maeda, S., Nagano, S., Komiya, S., Taniguchi, N., Setoguchi, T."Synergistic effect of arsenic trioxide, vismodegib and temozolomide on glioblastoma". Oncology Reports 41.6 (2019): 3404-3412.
Chicago
Bureta, C., Saitoh, Y., Tokumoto, H., Sasaki, H., Maeda, S., Nagano, S., Komiya, S., Taniguchi, N., Setoguchi, T."Synergistic effect of arsenic trioxide, vismodegib and temozolomide on glioblastoma". Oncology Reports 41, no. 6 (2019): 3404-3412. https://doi.org/10.3892/or.2019.7100