Overexpression of lncRNA TUSC7 reduces cell migration and invasion in colorectal cancer

  • Authors:
    • Haixia Zhang
    • Yanli Song
    • Changqing Yang
    • Xianzheng Wu
  • View Affiliations

  • Published online on: April 9, 2019     https://doi.org/10.3892/or.2019.7106
  • Pages: 3386-3392
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Colorectal cancer (CRC) is a highly heterogeneous disease worldwide. Long non‑coding RNA (lncRNA) tumor suppressor candidate 7 (TUSC7) plays a crucial role in the development of several cancers. However, the role of TUSC7 in the tumorigenesis of CRC has not been explored. The TUSC7‑overexpressing CRC cell lines SW480 and CaCo‑2 were generated to investigate the effects of TUSC7 on the growth, migration, invasion and epithelial‑mesenchymal transition (EMT) of CRC cells. CCK‑8, wound‑healing and Transwell assays were used to evaluate CRC cell proliferation, migration and invasion. The mRNA and protein expression of TUSC7 were detected by quantitative real‑time PCR and immunoblotting, respectively. In the present study, we observed that the expression of TUSC7 was decreased in CRC cells compared to the expression in the normal colon epithelial cell line NCM460. Moreover, overexpression of TUSC7 inhibited CRC cell proliferation, metastasis, invasion and EMT. These findings indicated that TUSC7 is involved in CRC development.

References

1 

Berian JR, Cuddy A, Francescatti AB, O'Dwyer L, Nancy You Y, Volk RJ and Chang GJ: A systematic review of patient perspectives on surveillance after colorectal cancer treatment. J Cancer Surviv. 11:542–552. 2017. View Article : Google Scholar : PubMed/NCBI

2 

Fuccio L, Repici A, Hassan C, Ponchon T, Bhandari P, Jover R, Triantafyllou K, Mandolesi D, Frazzoni L, Bellisario C, et al: Why attempt en bloc resection of non-pedunculated colorectal adenomas? A systematic review of the prevalence of superficial submucosal invasive cancer after endoscopic submucosal dissection. Gut. 67:1464–1474. 2018. View Article : Google Scholar : PubMed/NCBI

3 

Gkegkes ID, Minis EE and Iavazzo C: Dermatomyositis and colorectal cancer: A systematic review. Ir J Med Sci. 187:615–620. 2018. View Article : Google Scholar : PubMed/NCBI

4 

Fang JY, Dong HL, Sang XJ, Xie B, Wu KS, Du PL, Xu ZX, Jia XY and Lin K: Colorectal cancer mortality characteristics and predictions in China, 1991–2011. Asian Pac J Cancer Prev. 16:7991–7995. 2015. View Article : Google Scholar : PubMed/NCBI

5 

Huang HY, Shi JF, Guo LW, Bai YN, Liao XZ, Liu GX, Mao AY, Ren JS, Sun XJ, Zhu XY, et al: Expenditure and financial burden for the diagnosis and treatment of colorectal cancer in China: A hospital-based, multicenter, cross-sectional survey. Chin J Cancer. 36:412017. View Article : Google Scholar : PubMed/NCBI

6 

Ivanova JI, Saverno KR, Sung J, Duh MS, Zhao C, Cai S, Vekeman F, Peevyhouse A, Dhawan R and Fuchs CS: Real-world treatment patterns and effectiveness among patients with metastatic colorectal cancer treated with ziv-aflibercept in community oncology practices in the USA. Med Oncol. 34:1932017. View Article : Google Scholar : PubMed/NCBI

7 

Väyrynen JP, Tuomisto A, Väyrynen SA, Klintrup K, Karhu T, Mäkelä J, Herzig KH, Karttunen TJ and Mäkinen MJ: Preoperative anemia in colorectal cancer: Relationships with tumor characteristics, systemic inflammation, and survival. Sci Rep. 8:11262018. View Article : Google Scholar : PubMed/NCBI

8 

Tabung FK, Liu L, Wang W, Fung TT, Wu K, Smith-Warner SA, Cao Y, Hu FB, Ogino S, Fuchs CS, et al: Association of dietary inflammatory potential with colorectal cancer risk in men and women. JAMA Oncol. 4:366–373. 2018. View Article : Google Scholar : PubMed/NCBI

9 

Gu Y, Chen T, Li G, Yu X, Lu Y, Wang H and Teng L: lncRNAs: emerging biomarkers in gastric cancer. Future Oncol. 11:2427–2441. View Article : Google Scholar : PubMed/NCBI

10 

Ma N, Li S, Zhang Q, Wang H, Qin H and Wang S: Long non-coding RNA GAS5 inhibits ovarian cancer cell proliferation via the control of microRNA-21 and SPRY2 expression. Exp Ther Med. 16:73–82. 2018.PubMed/NCBI

11 

Ma Z, Peng P, Zhou J, Hui B, Ji H, Wang J and Wang K: Long non-coding RNA SH3PXD2A-AS1 promotes cell progression partly through epigenetic silencing P57 and KLF2 in colorectal cancer. Cell Physiol Biochem. 46:2197–2214. 2018. View Article : Google Scholar : PubMed/NCBI

12 

Jeong G, Bae H, Jeong D, Ham J, Park S, Kim HW, Kang HS and Kim SJ: A Kelch domain-containing KLHDC7B and a long non-coding RNA ST8SIA6-AS1 act oppositely on breast cancer cell proliferation via the interferon signaling pathway. Sci Rep. 8:129222018. View Article : Google Scholar : PubMed/NCBI

13 

Zou Y, Zhong Y, Wu J, Xiao H, Zhang X, Liao X, Li J, Mao X, Liu Y and Zhang F: Long non-coding PANDAR as a novel biomarker in human cancer: A systematic review. Cell Prolif. 51:e124222018. View Article : Google Scholar

14 

Peng W and Fan H: Long non-coding RNA PANDAR correlates with poor prognosis and promotes tumorigenesis in hepatocellular carcinoma. Biomed Pharmacother. 72:113–118. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Rivandi M, Pasdar A, Hamzezadeh L, Tajbakhsh A, Seifi S, Moetamani-Ahmadi M, Ferns GA and Avan A: The prognostic and therapeutic values of long noncoding RNA PANDAR in colorectal cancer. J Cell Physiol. 234:1230–1236. 2019. View Article : Google Scholar : PubMed/NCBI

16 

Lu M, Liu Z, Li B, Wang G, Li D and Zhu Y: The high expression of long non-coding RNA PANDAR indicates a poor prognosis for colorectal cancer and promotes metastasis by EMT pathway. J Cancer Res Clin Oncol. 143:71–81. 2017. View Article : Google Scholar : PubMed/NCBI

17 

Li M, Zhao LM, Li SL, Li J, Gao B, Wang FF, Wang SP, Hu XH, Cao J and Wang GY: Differentially expressed lncRNAs and mRNAs identified by NGS analysis in colorectal cancer patients. Cancer Med. 7:4650–4664. 2018. View Article : Google Scholar : PubMed/NCBI

18 

Dai M, Chen X, Mo S, Li J, Huang Z, Huang S, Xu J, He B, Zou Y, Chen J, et al: Meta-signature lncRNAs serve as novel biomarkers for colorectal cancer: Integrated bioinformatics analysis, experimental validation and diagnostic evaluation. Sci Rep. 7:465722017. View Article : Google Scholar : PubMed/NCBI

19 

Xu J, Zhang R and Zhao J: The Novel Long Noncoding RNA TUSC7 inhibits proliferation by sponging miR-211 in colorectal cancer. Cell Physiol Biochem. 41:635–644. 2017. View Article : Google Scholar : PubMed/NCBI

20 

Ren W, Chen S, Liu G, Wang X, Ye H and Xi Y: TUSC7 acts as a tumor suppressor in colorectal cancer. Am J Transl Res. 9:4026–4035. 2017.PubMed/NCBI

21 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

22 

Chang ZW, Jia YX, Zhang WJ, Song LJ, Gao M, Li MJ, Zhao RH, Li J, Zhong YL, Sun QZ, et al: lncRNA-TUSC7/miR-224 affected chemotherapy resistance of esophageal squamous cell carcinoma by competitively regulating DESC1. J Exp Clin Cancer Res. 37:562018. View Article : Google Scholar : PubMed/NCBI

23 

Ma XL, Zhu WD, Tian LX, Sun WD, Shang F, Lin QT and Zhang HQ: Long non-coding RNA TUSC7 expression is independently predictive of outcome in glioma. Eur Rev Med Pharmacol Sci. 21:3605–3610. 2017.PubMed/NCBI

24 

Qi P, Xu MD, Shen XH, Ni SJ, Huang D, Tan C, Weng WW, Sheng WQ, Zhou XY and Du X: Reciprocal repression between TUSC7 and miR-23b in gastric cancer. Int J Cancer. 137:1269–1278. 2015. View Article : Google Scholar : PubMed/NCBI

25 

Wang Y, Liu Z, Yao B, Dou C, Xu M, Xue Y, Ding L, Jia Y, Zhang H, Li Q, et al: Long non-coding RNA TUSC7 acts a molecular sponge for miR-10a and suppresses EMT in hepatocellular carcinoma. Tumour Biol. 37:11429–11441. 2016. View Article : Google Scholar : PubMed/NCBI

26 

Wang Z, Jin Y, Ren H, Ma X, Wang B and Wang Y: Downregulation of the long non-coding RNA TUSC7 promotes NSCLC cell proliferation and correlates with poor prognosis. Am J Transl Res. 8:680–687. 2016.PubMed/NCBI

27 

Li N, Shi K and Li W: TUSC7: A novel tumor suppressor long non-coding RNA in human cancers. J Cell Physiol. 233:6401–6407. 2018. View Article : Google Scholar : PubMed/NCBI

28 

Shang C, Guo Y, Hong Y and Xue YX: Long non-coding RNA TUSC7, a target of miR-23b, plays tumor-suppressing roles in human gliomas. Front Cell Neurosci. 10:2352016. View Article : Google Scholar : PubMed/NCBI

29 

Li T, Huang H, Shi G, Zhao L, Li T, Zhang Z, Liu R, Hu Y, Liu H, Yu J, et al: TGF-β1-SOX9 axis-inducible COL10A1 promotes invasion and metastasis in gastric cancer via epithelial-to-mesenchymal transition. Cell Death Dis. 9:8492018. View Article : Google Scholar : PubMed/NCBI

30 

Song N, Zhong J, Hu Q, Gu T, Yang B, Zhang J, Yu J, Ma X, Chen Q, Qi J, et al: FGF18 Enhances Migration and the epithelial-mesenchymal transition in breast Cancer by regulating Akt/GSK3β/β-catenin signaling. Cell Physiol Biochem. 49:1019–1032. 2018. View Article : Google Scholar : PubMed/NCBI

31 

Liu YW, Sun M, Xia R, Zhang EB, Liu XH, Zhang ZH, Xu TP, De W, Liu BR and Wang ZX: LincHOTAIR epigenetically silences miR34a by binding to PRC2 to promote the epithelial-to-mesenchymal transition in human gastric cancer. Cell Death Dis. 6:e18022015. View Article : Google Scholar : PubMed/NCBI

32 

Pan C, Yao G, Liu B, Ma T, Xia Y, Wei K, Wang J, Xu J, Chen L and Chen Y: Long noncoding RNA FAL1 promotes cell proliferation, invasion and epithelial-mesenchymal transition through the PTEN/AKT signaling axis in non-small cell lung cancer. Cell Physiol Biochem. 43:339–352. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Li J, Wang YM and Song YL: Knockdown of long noncoding RNA AB073614 inhibits glioma cell proliferation and migration via affecting epithelial-mesenchymal transition. Eur Rev Med Pharmacol Sci. 20:3997–4002. 2016.PubMed/NCBI

34 

Zhang W, Yuan W, Song J, Wang S and Gu X: lncRna CPS1-IT1 suppresses cell proliferation, invasion and metastasis in colorectal cancer. Cell Physiol Biochem. 44:567–580. 2017. View Article : Google Scholar : PubMed/NCBI

35 

Wang TH, Yu CC, Lin YS, Chen TC, Yeh CT, Liang KH, Shieh TM, Chen CY and Hsueh C: Long noncoding RNA CPS1-IT1 suppresses the metastasis of hepatocellular carcinoma by regulating HIF-1α activity and inhibiting epithelial-mesenchymal transition. Oncotarget. 7:43588–43603. 2016.PubMed/NCBI

36 

Xue J, Liao L, Yin F, Kuang H, Zhou X and Wang Y: lncRNA AB073614 induces epithelial- mesenchymal transition of colorectal cancer cells via regulating the JAK/STAT3 pathway. Cancer Biomark. 21:849–858. 2018. View Article : Google Scholar : PubMed/NCBI

37 

Zhao S, Zhang Y, Zheng X, Tu X, Li H, Chen J, Zang Y and Zhang J: Loss of MicroRNA-101 promotes epithelial to mesenchymal transition in hepatocytes. J Cell Physiol. 230:2706–2717. 2015. View Article : Google Scholar : PubMed/NCBI

38 

Jiang X, Zhou Y, Sun AJ and Xue JL: NEAT1 contributes to breast cancer progression through modulating miR-448 and ZEB1. J Cell Physiol. 233:8558–8566. 2018. View Article : Google Scholar : PubMed/NCBI

39 

de Barrios O, Győrffy B, Fernández-Aceñero MJ, Sánchez-Tilló E, Sánchez-Moral L, Siles L, Esteve-Arenys A, Roué G, Casal JI, Darling DS, et al: ZEB1-induced tumourigenesis requires senescence inhibition via activation of DKK1/mutant p53/Mdm2/CtBP and repression of macroH2A1. Gut. 66:666–682. 2017. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 41 Issue 6

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Zhang, H., Song, Y., Yang, C., & Wu, X. (2019). Overexpression of lncRNA TUSC7 reduces cell migration and invasion in colorectal cancer. Oncology Reports, 41, 3386-3392. https://doi.org/10.3892/or.2019.7106
MLA
Zhang, H., Song, Y., Yang, C., Wu, X."Overexpression of lncRNA TUSC7 reduces cell migration and invasion in colorectal cancer". Oncology Reports 41.6 (2019): 3386-3392.
Chicago
Zhang, H., Song, Y., Yang, C., Wu, X."Overexpression of lncRNA TUSC7 reduces cell migration and invasion in colorectal cancer". Oncology Reports 41, no. 6 (2019): 3386-3392. https://doi.org/10.3892/or.2019.7106