Isobavachalcone exerts anti‑proliferative and pro‑apoptotic effects on human liver cancer cells by targeting the ERKs/RSK2 signaling pathway

  • Authors:
    • Binbin Li
    • Nansong Xu
    • Zheng Wan
    • Li Ma
    • Huahui Li
    • Weijie Cai
    • Xiumei Chen
    • Zunnan Huang
    • Zhiwei He
  • View Affiliations

  • Published online on: April 2, 2019     https://doi.org/10.3892/or.2019.7090
  • Pages: 3355-3366
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Aberrant activation of the extracellular signal‑regulated kinases (ERKs)/ribosomal S6 kinase 2 (RSK2) signaling pathway is frequently determined in various human tumor types, including liver cancer, and has been considered as a promising target for cancer chemoprevention and therapy. In the present study, using computer‑aided virtual screening and molecular docking, isobavachalcone (IBC), a natural chalcone compound, was identified to be an ATP‑competitive inhibitor targeting ERK1/2 and RSK2. Cell Counting Kit‑8, EdU incorporation and colony formation assays were used to detect the effects of IBC on cell viability and proliferation, and the results demonstrated that IBC effectively inhibited the proliferation of liver cancer HepG2 and Hep3B cells, whereas it had no notable cytotoxic effect on immortal liver L02 cells. Flow cytometric analysis and western blotting further revealed that IBC caused significant levels of apoptosis on liver cancer cells via the caspase‑dependent mitochondria pathway. The computer prediction was confirmed with pull‑down and in vitro kinase assays, in which IBC directly bound with ERK1/2 and RSK2, and dose‑dependently blocked RSK2 kinase activity in liver cancer cells. Treatment of HepG2 or Hep3B cells with IBC significantly attenuated epidermal growth factor‑induced phosphorylation of RSK2 and resulted in the reduced activation of its downstream substrates including cAMP response element‑binding protein, activating transcription factor 1, histone H3 and activating protein‑1. Enforced RSK2 expression in L02 cells could increase the effect of IBC on suppressing cell growth. Conversely, knockdown of RSK2 reduced the inhibitory effect of IBC on HepG2 cell proliferation. Overall, the present data indicated that ERKs/RSK2 signaling serves a pivotal role in IBC‑induced suppression of liver cancer cells and that IBC may be a potential therapeutic candidate for human cancer with elevated ERKs/RSK2 activity.

References

1 

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Kumar M, Zhao X and Wang XW: Molecular carcinogenesis of hepatocellular carcinoma and intrahepatic cholangiocarcinoma: One step closer to personalized medicine? Cell Biosci. 1:52011. View Article : Google Scholar : PubMed/NCBI

3 

Santarpia L, Lippman SM and El-Naggar AK: Targeting the MAPK-RAS-RAF signaling pathway in cancer therapy. Expert Opin Ther Targets. 16:103–119. 2012. View Article : Google Scholar : PubMed/NCBI

4 

Yip-Schneider MT, Klein PJ, Wentz SC, Zeni A, Menze A and Schmidt CM: Resistance to mitogen-activated protein kinase kinase (MEK) inhibitors correlates with up-regulation of the MEK/extracellular signal-regulated kinase pathway in hepatocellular carcinoma cells. J Pharmacol Exp Ther. 329:1063–1070. 2009. View Article : Google Scholar : PubMed/NCBI

5 

Yang S and Liu G: Targeting the Ras/Raf/MEK/ERK pathway in hepatocellular carcinoma. Oncol Lett. 13:1041–1047. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Hsu CH, Shen YC, Shao YY, Hsu C and Cheng AL: Sorafenib in advanced hepatocellular carcinoma: Current status and future perspectives. J Hepatocell Carcinoma. 1:85–99. 2014.PubMed/NCBI

7 

Lim HY, Heo J, Choi HJ, Lin CY, Yoon JH, Hsu C, Rau KM, Poon RT, Yeo W, Park JW, et al: A phase II study of the efficacy and safety of the combination therapy of the MEK inhibitor refametinib (BAY 86-9766) plus sorafenib for Asian patients with unresectable hepatocellular carcinoma. Clin Cancer Res. 20:5976–5985. 2014. View Article : Google Scholar : PubMed/NCBI

8 

Roberts PJ and Der CJ: Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene. 26:3291–3310. 2007. View Article : Google Scholar : PubMed/NCBI

9 

Wang H, Xu L, Zhu X, Wang P, Chi H and Meng Z: Activation of phosphatidylinositol 3-kinase/Akt signaling mediates sorafenib-induced invasion and metastasis in hepatocellular carcinoma. Oncol Rep. 32:1465–1472. 2014. View Article : Google Scholar : PubMed/NCBI

10 

Romeo Y, Zhang X and Roux PP: Regulation and function of the RSK family of protein kinases. Biochem J. 441:553–569. 2012. View Article : Google Scholar : PubMed/NCBI

11 

Ito Y, Sasaki Y, Horimoto M, Wada S, Tanaka Y, Kasahara A, Ueki T, Hirano T, Yamamoto H, Fujimoto J, et al: Activation of mitogen-activated protein kinases/extracellular signal-regulated kinases in human hepatocellular carcinoma. Hepatology. 27:951–958. 1998. View Article : Google Scholar : PubMed/NCBI

12 

Tsuboi Y, Ichida T, Sugitani S, Genda T, Inayoshi J, Takamura M, Matsuda Y, Nomoto M and Aoyagi Y: Overexpression of extracellular signal-regulated protein kinase and its correlation with proliferation in human hepatocellular carcinoma. Liver Int. 24:432–436. 2004. View Article : Google Scholar : PubMed/NCBI

13 

Bessard A, Frémin C, Ezan F, Fautrel A, Gailhouste L and Baffet G: RNAi-mediated ERK2 knockdown inhibits growth of tumor cells in vitro and in vivo. Oncogene. 27:5315–5325. 2008. View Article : Google Scholar : PubMed/NCBI

14 

Xie YX, Liao R, Pan L and Du CY: ERK pathway activation contributes to the tumor-promoting effects of hepatic stellate cells in hepatocellular carcinoma. Immunol Lett. 188:116–123. 2017. View Article : Google Scholar : PubMed/NCBI

15 

Liao B, Zhou H, Liang H and Li C: Regulation of ERK and AKT pathways by hepatitis B virus X protein via the Notch1 pathway in hepatocellular carcinoma. Int J Oncol. 51:1449–1459. 2017. View Article : Google Scholar : PubMed/NCBI

16 

Schmitz KJ, Wohlschlaeger J, Lang H, Sotiropoulos GC, Malago M, Steveling K, Reis H, Cicinnati VR, Schmid KW and Baba HA: Activation of the ERK and AKT signalling pathway predicts poor prognosis in hepatocellular carcinoma and ERK activation in cancer tissue is associated with hepatitis C virus infection. J Hepatol. 48:83–90. 2008. View Article : Google Scholar : PubMed/NCBI

17 

Kim HS, Kim SJ, Bae J, Wang Y, Park SY, Min YS, Je HD and Sohn UD: The p90rsk-mediated signaling of ethanol-induced cell proliferation in HepG2 cell line. Korean J Physiol Pharmacol. 20:595–603. 2016. View Article : Google Scholar : PubMed/NCBI

18 

Yuan R, Hou Y, Sun W, Yu J, Liu X, Niu Y, Lu JJ and Chen X: Natural products to prevent drug resistance in cancer chemotherapy: A review. Ann N Y Acad Sci. 1401:19–27. 2017. View Article : Google Scholar : PubMed/NCBI

19 

Raghavendra NM, Pingili D, Kadasi S, Mettu A and Prasad S: Dual or multi-targeting inhibitors: The next generation anticancer agents. Eur J Med Chem. 143:1277–1300. 2018. View Article : Google Scholar : PubMed/NCBI

20 

Leelananda SP and Lindert S: Computational methods in drug discovery. Beilstein J Org Chem. 12:2694–2718. 2016. View Article : Google Scholar : PubMed/NCBI

21 

Utepbergenov D, Derewenda U, Olekhnovich N, Szukalska G, Banerjee B, Hilinski MK, Lannigan DA, Stukenberg PT and Derewenda ZS: Insights into the inhibition of the p90 ribosomal S6 kinase (RSK) by the flavonol glycoside SL0101 from the 1.5 Å crystal structure of the N-terminal domain of RSK2 with bound inhibitor. Biochemistry. 51:6499–6510. 2012. View Article : Google Scholar : PubMed/NCBI

22 

Serafimova IM, Pufall MA, Krishnan S, Duda K, Cohen MS, Maglathlin RL, McFarland JM, Miller RM, Frödin M and Taunton J: Reversible targeting of noncatalytic cysteines with chemically tuned electrophiles. Nat Chem Biol. 8:471–476. 2012. View Article : Google Scholar : PubMed/NCBI

23 

Chaikuad A, Tacconi EM, Zimmer J, Liang Y, Gray NS, Tarsounas M and Knapp S: A unique inhibitor binding site in ERK1/2 is associated with slow binding kinetics. Nat Chem Biol. 10:853–860. 2014. View Article : Google Scholar : PubMed/NCBI

24 

Schrödinger Release 2015-2; Schrödinger Suite 2015-2 Protein Preparation Wizard; Epik version 3.2, Schrödinger, LLC, New York, NY, 2015; Impact version 6.7, Schrödinger, LLC, New York, NY, 2015; Prime version 4.0, . Schrödinger, LLC; New York, NY: 2015

25 

Small-Molecule Drug Discovery Suite 2015-2; Glide, version 6.7, . Schrödinger, LLC; New York, NY: 2015

26 

Schrödinger Release 2015-2; LigPrep, version 3.4, . Schrödinger, LLC; New York, NY: 2015

27 

Small-Molecule Drug Discovery Suite 2015-2; Glide, version 6.7, . Schrrödinger, LLC; New York, NY: 2015

28 

Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC and Mainz DT: Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem. 49:6177–6196. 2006. View Article : Google Scholar : PubMed/NCBI

29 

Small-Molecule Drug Discovery Suite 2015-2: Schrödinger Suite 2015-2 Induced Fit Docking protocol. Glide version 6.7, Schrödinger, LLC, New York, NY, 2015; Prime version 4.0, . Schrödinger, LLC; New York, NY: 2015

30 

Schrödinger Release 2015-2; Maestro, version 10.2, . Schrödinger, LLC; New York, NY: 2015

31 

Cho YY, Yao K, Kim HG, Kang BS, Zheng D, Bode AM and Dong Z: Ribosomal S6 kinase 2 is a key regulator in tumor promoter induced cell transformation. Cancer Res. 67:8104–8112. 2007. View Article : Google Scholar : PubMed/NCBI

32 

Li B, Huang G, Zhang X, Li R, Wang J, Dong Z and He Z: Increased phosphorylation of histone H3 at serine 10 is involved in Epstein-Barr virus latent membrane protein-1-induced carcinogenesis of nasopharyngeal carcinoma. BMC Cancer. 13:1242013. View Article : Google Scholar : PubMed/NCBI

33 

Malakhova M, Kurinov I, Liu K, Zheng D, D'Angelo I, Shim JH, Steinman V, Bode AM and Dong Z: Structural diversity of the active N-terminal kinase domain of p90 ribosomal S6 kinase 2. PLoS One. 4:e80442009. View Article : Google Scholar : PubMed/NCBI

34 

Pearce LR, Komander D and Alessi DR: The nuts and bolts of AGC protein kinases. Nat Rev Mol Cell Biol. 11:9–22. 2010. View Article : Google Scholar : PubMed/NCBI

35 

Sassone-Corsi P, Mizzen CA, Cheung P, Crosio C, Monaco L, Jacquot S, Hanauer A and Allis CD: Requirement of Rsk-2 for epidermal growth factor-activated phosphorylation of histone H3. Science. 285:886–891. 1999. View Article : Google Scholar : PubMed/NCBI

36 

Karin M, Liu Z and Zandi E: AP-1 function and regulation. Curr Opin Cell Biol. 9:240–246. 1997. View Article : Google Scholar : PubMed/NCBI

37 

Cho YY: RSK2 and its binding partners in cell proliferation, transformation and cancer development. Arch Pharm Res. 40:291–303. 2017. View Article : Google Scholar : PubMed/NCBI

38 

David JP, Mehic D, Bakiri L, Schilling AF, Mandic V, Priemel M, Idarraga MH, Reschke MO, Hoffmann O, Amling M, et al: Essential role of RSK2 in c-Fos-dependent osteosarcoma development. J Clin Invest. 115:664–672. 2005. View Article : Google Scholar : PubMed/NCBI

39 

Sulzmaier FJ, Young-Robbins S, Jiang P, Geerts D, Prechtl AM, Matter ML, Kesari S and Ramos JW: RSK2 activity mediates glioblastoma invasiveness and is a potential target for new therapeutics. Oncotarget. 7:79869–79884. 2016. View Article : Google Scholar : PubMed/NCBI

40 

Shimura Y, Kuroda J, Ri M, Nagoshi H, Yamamoto-Sugitani M, Kobayashi T, Kiyota M, Nakayama R, Mizutani S, Chinen Y, et al: RSK2Ser227 at N-terminal kinase domain is a potential therapeutic target for multiple myeloma. Mol Cancer Ther. 11:2600–2609. 2012. View Article : Google Scholar : PubMed/NCBI

41 

Cho YY, Lee MH, Lee CJ, Yao K, Lee HS, Bode AM and Dong Z: RSK2 as a key regulator in human skin cancer. Carcinogenesis. 33:2529–2537. 2012. View Article : Google Scholar : PubMed/NCBI

42 

Roessler S, Jia HL, Budhu A, Forgues M, Ye QH, Lee JS, Thorgeirsson SS, Sun Z, Tang ZY, Qin LX, et al: A unique metastasis gene signature enables prediction of tumor relapse in early-stage hepatocellular carcinoma patients. Cancer Res. 70:10202–10212. 2010. View Article : Google Scholar : PubMed/NCBI

43 

Kuete V and Sandjo LP: Isobavachalcone: An overview. Chin J Integr Med. 18:543–547. 2012. View Article : Google Scholar : PubMed/NCBI

44 

Akihisa T, Tokuda H, Hasegawa D, Ukiya M, Kimura Y, Enjo F, Suzuki T and Nishino H: Chalcones and other compounds from the exudates of Angelica keiskei and their cancer chemopreventive effects. J Nat Prod. 69:38–42. 2006. View Article : Google Scholar : PubMed/NCBI

45 

Nishimura R, Tabata K, Arakawa M, Ito Y, Kimura Y, Akihisa T, Nagai H, Sakuma A, Kohno H and Suzuki T: Isobavachalcone, a chalcone constituent of Angelica keiskei, induces apoptosis in neuroblastoma. Biol Pharm Bull. 30:1878–1883. 2007. View Article : Google Scholar : PubMed/NCBI

46 

Jing H, Zhou X, Dong X, Cao J, Zhu H, Lou J, Hu Y, He Q and Yang B: Abrogation of Akt signaling by Isobavachalcone contributes to its anti-proliferative effects towards human cancer cells. Cancer Lett. 294:167–177. 2010. View Article : Google Scholar : PubMed/NCBI

47 

Feng J, Tamaskovic R, Yang Z, Brazil DP, Merlo A, Hess D and Hemmings BA: Stabilization of Mdm2 via decreased ubiquitination is mediated by protein kinase B/Akt-dependent phosphorylation. J Biol Chem. 279:35510–35517. 2004. View Article : Google Scholar : PubMed/NCBI

48 

Qiu Q, Jiang J, Lin L, Cheng S, Xin D, Jiang W, Shen J and Hu Z: Downregulation of RSK2 influences the biological activities of human osteosarcoma cells through inactivating AKT/mTOR signaling pathways. Int J Oncol. 48:2508–2520. 2016. View Article : Google Scholar : PubMed/NCBI

49 

Cho YY, He Z, Zhang Y, Choi HS, Zhu F, Choi BY, Kang BS, Ma WY, Bode AM and Dong Z: The p53 protein is a novel substrate of ribosomal S6 kinase 2 and a critical intermediary for ribosomal S6 kinase 2 and histone H3 interaction. Cancer Res. 65:3596–3603. 2005. View Article : Google Scholar : PubMed/NCBI

50 

She QB, Ma WY, Zhong S and Dong Z: Activation of JNK1, RSK2, and MSK1 is involved in serine 112 phosphorylation of bad by ultraviolet B radiation. J Biol Chem. 277:24039–24048. 2002. View Article : Google Scholar : PubMed/NCBI

51 

Anjum R, Roux PP, Ballif BA, Gygi SP and Blenis J: The tumor suppressor DAP kinase is a target of RSK-mediated survival signaling. Curr Biol. 15:1762–1767. 2005. View Article : Google Scholar : PubMed/NCBI

52 

Chen KF, Lin JP, Shiau CW, Tai WT, Liu CY, Yu HC, Chen PJ and Cheng AL: Inhibition of Bcl-2 improves effect of LCL161, a SMAC mimetic, in hepatocellular carcinoma cells. Biochem Pharmacol. 84:268–277. 2012. View Article : Google Scholar : PubMed/NCBI

53 

Jiang L, Zhang Q, Ren H, Ma S, Lu C, Liu B, Liu J, Liang J, Li M and Zhu R: Dihydromyricetin enhances the chemo-sensitivity of nedaplatin via regulation of the p53/Bcl-2 pathway in hepatocellular carcinoma Cells. PLoS One. 10:e01249942015. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 41 Issue 6

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Li, B., Xu, N., Wan, Z., Ma, L., Li, H., Cai, W. ... He, Z. (2019). Isobavachalcone exerts anti‑proliferative and pro‑apoptotic effects on human liver cancer cells by targeting the ERKs/RSK2 signaling pathway. Oncology Reports, 41, 3355-3366. https://doi.org/10.3892/or.2019.7090
MLA
Li, B., Xu, N., Wan, Z., Ma, L., Li, H., Cai, W., Chen, X., Huang, Z., He, Z."Isobavachalcone exerts anti‑proliferative and pro‑apoptotic effects on human liver cancer cells by targeting the ERKs/RSK2 signaling pathway". Oncology Reports 41.6 (2019): 3355-3366.
Chicago
Li, B., Xu, N., Wan, Z., Ma, L., Li, H., Cai, W., Chen, X., Huang, Z., He, Z."Isobavachalcone exerts anti‑proliferative and pro‑apoptotic effects on human liver cancer cells by targeting the ERKs/RSK2 signaling pathway". Oncology Reports 41, no. 6 (2019): 3355-3366. https://doi.org/10.3892/or.2019.7090