Open Access

LRG‑1 enhances the migration of thyroid carcinoma cells through promotion of the epithelial‑mesenchymal transition by activating MAPK/p38 signaling

  • Authors:
    • Zhengfeng Ban
    • Jinnian He
    • Zhenzhen Tang
    • Linlin Zhang
    • Zhiwen Xu
  • View Affiliations

  • Published online on: April 17, 2019     https://doi.org/10.3892/or.2019.7123
  • Pages: 3270-3280
  • Copyright: © Ban et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Leucine‑rich‑alpha‑2‑glycoprotein 1 (LRG‑1) has been reported to be associated with multiple malignancies. However, its participation in thyroid carcinoma progression remains unclear. In the present study, the biological function and underlying molecular mechanisms of LRG‑1 in thyroid carcinoma were investigated. It was found that LRG‑1 was overexpressed in thyroid carcinoma tissues, and high LRG‑1 expression predicted poor patient survival and late tumor stage. As shown in the mouse xenograft study, knockdown of LRG‑1 significantly attenuated thyroid cancer growth in vivo. Based on wound healing, Transwell, proliferation and apoptosis assays, it was found that the knockdown of LRG‑1, using shLRG‑1, inhibited cell migration and invasion, but did not affect proliferation and apoptosis in thyroid cancer cells. Furthermore, LRG‑1 also induced epithelial‑mesenchymal transition (EMT) in thyroid carcinoma cells. Western blot analysis revealed that this tumor‑promoting bioactivity of LRG‑1 was attributed to its selective activation of MAPK/p38 signaling. All of these findings indicate that LRG‑1 plays a deleterious role in the progression of thyroid carcinoma. LRG‑1 may serve as a promising biomarker for predicting prognosis in thyroid carcinoma patients, and LRG‑1‑based therapy may be developed into a novel strategy for the treatment of thyroid carcinoma.

References

1 

Yapa S, Mulla O, Green V, England J and Greenman J: The role of chemokines in thyroid carcinoma. Thyroid. 27:1347–1359. 2017. View Article : Google Scholar : PubMed/NCBI

2 

Lim H, Devesa SS, Sosa JA, Check D and Kitahara CM: Trends in thyroid cancer incidence and mortality in the United States, 1974–2013. JAMA. 317:1338–1348. 2017. View Article : Google Scholar : PubMed/NCBI

3 

Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, Pacini F, Randolph GW, Sawka AM, Schlumberger M, et al: 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 26:1–133. 2016. View Article : Google Scholar : PubMed/NCBI

4 

Ibrahim EY and Busaidy NL: Treatment and surveillance of advanced, metastatic iodine-resistant differentiated thyroid cancer. Curr Opin Oncol. 29:151–158. 2017.PubMed/NCBI

5 

Nikiforov YE: Role of molecular markers in thyroid nodule management: Then and now. Endocr Pract. 23:979–988. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Romei C, Ciampi R and Elisei R: A comprehensive overview of the role of the RET proto-oncogene in thyroid carcinoma. Nat Rev Endocrinol. 12:192–202. 2016. View Article : Google Scholar : PubMed/NCBI

7 

Bogachek MV, De Andrade JP and Weigel RJ: Regulation of epithelial-mesenchymal transition through SUMOylation of transcription factors. Cancer Res. 75:11–15. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Huang RY, Guilford P and Thiery JP: Early events in cell adhesion and polarity during epithelial-mesenchymal transition. J Cell Sci. 125:4417–4422. 2012. View Article : Google Scholar : PubMed/NCBI

9 

Kalluri R and Weinberg RA: The basics of epithelial-mesenchymal transition. J Clin Invest. 119:1420–1428. 2009. View Article : Google Scholar : PubMed/NCBI

10 

Lamouille S, Xu J and Derynck R: Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 15:178–196. 2014. View Article : Google Scholar : PubMed/NCBI

11 

Tam WL and Weinberg RA: The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat Med. 19:1438–1449. 2013. View Article : Google Scholar : PubMed/NCBI

12 

Thiery JP, Acloque H, Huang RY and Nieto MA: Epithelial-mesenchymal transitions in development and disease. Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI

13 

Vasko V, Espinosa AV, Scouten W, He H, Auer H, Liyanarachchi S, Larin A, Savchenko V, Francis GL, de la Chapelle A, et al: Gene expression and functional evidence of epithelial-to-mesenchymal transition in papillary thyroid carcinoma invasion. Proc Natl Acad Sci USA. 104:2803–2808. 2007. View Article : Google Scholar : PubMed/NCBI

14 

Chen LL, Gao GX, Shen FX, Chen X, Gong XH and Wu WJ: SDC4 gene silencing favors human papillary thyroid carcinoma cell apoptosis and inhibits epithelial mesenchymal transition via Wnt/β-catenin pathway. Mol Cells. 41:853–867. 2018.PubMed/NCBI

15 

Puli OR, Danysh BP, McBeath E, Sinha DK, Hoang NM, Powell RT, Danysh HE, Cabanillas ME, Cote GJ and Hofmann MC: The transcription factor ETV5 mediates BRAFV600E-induced proliferation and TWIST1 expression in papillary thyroid cancer cells. Neoplasia. 20:1121–1134. 2018. View Article : Google Scholar : PubMed/NCBI

16 

Yan R, Yang T, Zhai H, Zhou Z, Gao L and Li Y: MicroRNA-150-5p affects cell proliferation, apoptosis, and EMT by regulation of the BRAFV600E mutation in papillary thyroid cancer cells. J Cell Biochem. 119:8763–8772. 2018. View Article : Google Scholar : PubMed/NCBI

17 

Wang Y, Gu J, Lin X, Yan W, Yang W and Wu G: lncRNA BANCR promotes EMT in PTC via the Raf/MEK/ERK signaling pathway. Oncol Lett. 15:5865–5870. 2018.PubMed/NCBI

18 

Haupt H and Baudner S: Isolation and characterization of an unknown, leucine-rich 3.1-S-alpha2-glycoprotein from human serum (author's transl). Hoppe Seylers Z Physiol Chem. 358:639–646. 1977.(In German). View Article : Google Scholar : PubMed/NCBI

19 

Wang X, Abraham S, McKenzie JAG, Jeffs N, Swire M, Tripathi VB, Luhmann UFO, Lange CAK, Zhai Z, Arthur HM, et al: LRG1 promotes angiogenesis by modulating endothelial TGF-beta signalling. Nature. 499:306–311. 2013. View Article : Google Scholar : PubMed/NCBI

20 

Furukawa K, Kawamoto K, Eguchi H, Tanemura M, Tanida T, Tomimaru Y, Akita H, Hama N, Wada H, Kobayashi S, et al: Clinicopathological significance of leucine-rich α2-glycoprotein-1 in sera of patients with pancreatic cancer. Pancreas. 44:93–98. 2015. View Article : Google Scholar : PubMed/NCBI

21 

Lindén M, Lind SB, Mayrhofer C, Segersten U, Wester K, Lyutvinskiy Y, Zubarev R, Malmström PU and Pettersson U: Proteomic analysis of urinary biomarker candidates for nonmuscle invasive bladder cancer. Proteomics. 12:135–144. 2012. View Article : Google Scholar : PubMed/NCBI

22 

Andersen JD, Boylan KL, Jemmerson R, Geller MA, Misemer B, Harrington KM, Weivoda S, Witthuhn BA, Argenta P, Vogel RI and Skubitz AP: Leucine-rich alpha-2-glycoprotein-1 is upregulated in sera and tumors of ovarian cancer patients. J Ovarian Res. 3:212010. View Article : Google Scholar : PubMed/NCBI

23 

Sandanayake NS, Sinclair J, Andreola F, Chapman MH, Xue A, Webster GJ, Clarkson A, Gill A, Norton ID, Smith RC, et al: A combination of serum leucine-rich α-2-glycoprotein 1, CA19-9 and interleukin-6 differentiate biliary tract cancer from benign biliary strictures. Br J Cancer. 105:1370–1378. 2011. View Article : Google Scholar : PubMed/NCBI

24 

Zhong D, He G, Zhao S, Li J, Lang Y, Ye W, Li Y, Jiang C and Li X: LRG1 modulates invasion and migration of glioma cell lines through TGF-β signaling pathway. Acta Histochem. 117:551–558. 2015. View Article : Google Scholar : PubMed/NCBI

25 

Zhang J, Zhu L, Fang J, Ge Z and Li X: LRG1 modulates epithelial-mesenchymal transition and angiogenesis in colorectal cancer via HIF-1α activation. J Exp Clin Cancer Res. 35:292016. View Article : Google Scholar : PubMed/NCBI

26 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

27 

Alegria-Schaffer A, Lodge A and Vattem K: Performing and optimizing Western blots with an emphasis on chemiluminescent detection. Methods Enzymol. 463:573–599. 2009. View Article : Google Scholar : PubMed/NCBI

28 

Meng X, Kong DH, Li N, Zong ZH, Liu BQ, Du ZX, Guan Y, Cao L and Wang HQ: Knockdown of BAG3 induces epithelial-mesenchymal transition in thyroid cancer cells through ZEB1 activation. Cell Death Dis. 5:e10922014. View Article : Google Scholar : PubMed/NCBI

29 

Huang C, Jacobson K and Schaller MD: MAP kinases and cell migration. J Cell Sci. 117:4619–4628. 2004. View Article : Google Scholar : PubMed/NCBI

30 

Okada T, Sinha S, Esposito I, Schiavon G, López-Lago MA, Su W, Pratilas CA, Abele C, Hernandez JM, Ohara M, et al: The Rho GTPase Rnd1 suppresses mammary tumorigenesis and EMT by restraining Ras-MAPK signalling. Nat Cell Biol. 17:81–94. 2015. View Article : Google Scholar : PubMed/NCBI

31 

Hu Y, Wang H, Chen E, Xu Z, Chen B and Lu G: Candidate microRNAs as biomarkers of thyroid carcinoma: A systematic review, meta-analysis, and experimental validation. Cancer Med. 5:2602–2614. 2016. View Article : Google Scholar : PubMed/NCBI

32 

Xing M, Haugen BR and Schlumberger M: Progress in molecular-based management of differentiated thyroid cancer. Lancet. 381:1058–1069. 2013. View Article : Google Scholar : PubMed/NCBI

33 

Nikiforov YE, Ohori NP, Hodak SP, Carty SE, LeBeau SO, Ferris RL, Yip L, Seethala RR, Tublin ME, Stang MT, et al: Impact of mutational testing on the diagnosis and management of patients with cytologically indeterminate thyroid nodules: A prospective analysis of 1056 FNA samples. J Clin Endocrinol Metab. 96:3390–3397. 2011. View Article : Google Scholar : PubMed/NCBI

34 

Leboulleux S, Bastholt L, Krause T, de la Fouchardiere C, Tennvall J, Awada A, Gómez JM, Bonichon F, Leenhardt L, Soufflet C, et al: Vandetanib in locally advanced or metastatic differentiated thyroid cancer: A randomised, double-blind, phase 2 trial. Lancet Oncol. 13:897–905. 2012. View Article : Google Scholar : PubMed/NCBI

35 

Kloos RT, Ringel MD, Knopp MV, Hall NC, King M, Stevens R, Liang J, Wakely PE Jr, Vasko VV, Saji M, et al: Phase II trial of sorafenib in metastatic thyroid cancer. J Clin Oncol. 27:1675–1684. 2009. View Article : Google Scholar : PubMed/NCBI

36 

Sherman SI, Jarzab B, Cabanillas ME, Licitra LF, Pacini F, Martins R, Robinson B, Ball D, McCaffrey J, Shah MH, et al: A phase II trial of the multi-targeted kinase inhibitor, lenvatinib (E7080), in advanced radioiodine-refractory differentiated thyroid cancer (DTC). J Clin Oncol. 29 (Suppl):S55032011. View Article : Google Scholar

37 

Wang Y, Xu J and Zhang X, Wang C, Huang Y, Dai K and Zhang X: TNF-α-induced LRG1 promotes angiogenesis and mesenchymal stem cell migration in the subchondral bone during osteoarthritis. Cell Death Dis. 8:e27152017. View Article : Google Scholar : PubMed/NCBI

38 

Yang J and Weinberg RA: Epithelial-mesenchymal transition: At the crossroads of development and tumor metastasis. Dev Cell. 14:818–829. 2008. View Article : Google Scholar : PubMed/NCBI

39 

Hardy RG, Vicente-Dueñas C, González-Herrero I, Anderson C, Flores T, Hughes S, Tselepis C, Ross JA and Sánchez-García I: Snail family transcription factors are implicated in thyroid carcinogenesis. Am J Pathol. 171:1037–1046. 2007. View Article : Google Scholar : PubMed/NCBI

40 

Mulholland DJ, Kobayashi N, Ruscetti M, Zhi A, Tran LM, Huang J, Gleave M and Wu H: Pten loss and RAS/MAPK activation cooperate to promote EMT and metastasis initiated from prostate cancer stem/progenitor cells. Cancer Res. 72:1878–1889. 2012. View Article : Google Scholar : PubMed/NCBI

41 

Jordà M, Olmeda D, Vinyals A, Valero E, Cubillo E, Llorens A, Cano A and Fabra A: Upregulation of MMP-9 in MDCK epithelial cell line in response to expression of the Snail transcription factor. J Cell Sci. 118:3371–3385. 2005. View Article : Google Scholar : PubMed/NCBI

42 

Hong J, Zhou J, Fu J, He T, Qin J, Wang L, Liao L and Xu J: Phosphorylation of serine 68 of Twist1 by MAPKs stabilizes Twist1 protein and promotes breast cancer cell invasiveness. Cancer Res. 71:3980–3990. 2011. View Article : Google Scholar : PubMed/NCBI

43 

Uttamsingh S, Bao X, Nguyen KT, Bhanot M, Gong J, Chan JL, Liu F, Chu TT and Wang LH: Synergistic effect between EGF and TGF-beta1 in inducing oncogenic properties of intestinal epithelial cells. Oncogene. 27:2626–2634. 2008. View Article : Google Scholar : PubMed/NCBI

44 

Xie L, Law BK, Chytil AM, Brown KA, Aakre ME and Moses HL: Activation of the Erk pathway is required for TGF-beta1-induced EMT in vitro. Neoplasia. 6:603–610. 2004. View Article : Google Scholar : PubMed/NCBI

45 

Yu L, Hébert MC and Zhang YE: TGF-beta receptor-activated p38 MAP kinase mediates Smad-independent TGF-beta responses. EMBO J. 21:3749–3759. 2002. View Article : Google Scholar : PubMed/NCBI

46 

Bi CL, Zhang YQ, Li B, Guo M and Fu YL: MicroRNA-520a-3p suppresses epithelial-mesenchymal transition, invasion, and migration of papillary thyroid carcinoma cells via the JAK1-mediated JAK/STAT signaling pathway. J Cell Physiol. 234:4054–4067. 2019. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 41 Issue 6

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Ban, Z., He, J., Tang, Z., Zhang, L., & Xu, Z. (2019). LRG‑1 enhances the migration of thyroid carcinoma cells through promotion of the epithelial‑mesenchymal transition by activating MAPK/p38 signaling. Oncology Reports, 41, 3270-3280. https://doi.org/10.3892/or.2019.7123
MLA
Ban, Z., He, J., Tang, Z., Zhang, L., Xu, Z."LRG‑1 enhances the migration of thyroid carcinoma cells through promotion of the epithelial‑mesenchymal transition by activating MAPK/p38 signaling". Oncology Reports 41.6 (2019): 3270-3280.
Chicago
Ban, Z., He, J., Tang, Z., Zhang, L., Xu, Z."LRG‑1 enhances the migration of thyroid carcinoma cells through promotion of the epithelial‑mesenchymal transition by activating MAPK/p38 signaling". Oncology Reports 41, no. 6 (2019): 3270-3280. https://doi.org/10.3892/or.2019.7123