Open Access

Gene profiling of HepG2 cells following nitidine chloride treatment: An investigation with microarray and Connectivity Mapping

  • Authors:
    • Li‑Min Liu
    • Peng Lin
    • Hong Yang
    • Yi‑Wu Dang
    • Gang Chen
  • View Affiliations

  • Published online on: April 2, 2019     https://doi.org/10.3892/or.2019.7091
  • Pages: 3244-3256
  • Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Nitidine chloride (NC), an inartificial bioactive alkaloid present in the root of Zanthoxylum nitidum (Roxb.) DC, is known for its versatile anti‑inflammation and anticancer capabilities. The molecular mechanisms underlying its anticancer properties, however, remain obscure. The authors of the present study demonstrated the tumor suppressive effects of NC in a human liver cancer cell line using an MTT assay. The tumor suppressive capacity of NC was also analysed in a tumor xenograft nude mouse model. Changes in tumor cell gene expression profiles following NC treatment were detected by microarray; bioinformatics analysis demonstrated that differentially expressed genes were enriched in several cancer‑associated pathways, including those initiated by transforming growth factor‑β and phosphatidylinositol 4,5‑bisphosphate 3‑kinase/RAC‑α serine/threonine‑protein kinase signaling. A Connectivity Map revealed that parthenolide, which has been identified previously as possessing anti‑inflammatory and anticancer functions, was potentially extremely similar in molecular function to NC. By screening the data from The Cancer Genome Atlas project, eight genes that were upregulated in liver cancer and significantly suppressed by NC treatment were identified. Overexpression of these genes was closely associated with advanced tumor stage and poor differentiation status. This combination of upregulated genes enabled successful identification and prediction of prognosis for liver cancer. The findings of the present study suggest that NC could inhibit the growth of liver cancer cells through several potential molecular targets and signaling pathways.

References

1 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2018. CA Cancer J Clin. 68:7–30. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Laursen L: A preventable cancer. Nature. 516:S2–3. 2014. View Article : Google Scholar : PubMed/NCBI

3 

Fujiwara N, Friedman SL, Goossens N and Hoshida Y: Risk factors and prevention of hepatocellular carcinoma in the era of precision medicine. J Hepatol. 68:526–549. 2018. View Article : Google Scholar : PubMed/NCBI

4 

Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI

5 

El-Serag HB: Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology. 142:1264–1273 e1. 2012. View Article : Google Scholar : PubMed/NCBI

6 

Liu Z, Wang C, Jiao X, Zhao S, Liu X, Wang Y and Zhang J: miR-221 promotes growth and invasion of hepatocellular carcinoma cells by constitutive activation of NFκB. Am J Transl Res. 8:4764–4777. 2016.PubMed/NCBI

7 

Wong CH, Wong CS and Chan SL: Targeting angiogenic genes as a therapeutic approach for hepatocellular carcinoma. Curr Gene Ther. 15:97–108. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Forner A, Reig M and Bruix J: Hepatocellular carcinoma. Lancet. 391:1301–1314. 2018. View Article : Google Scholar : PubMed/NCBI

9 

Wu CH, Lan CH, Wu KL, Wu YM, Jane WN, Hsiao M and Wu HC: Hepatocellular carcinoma-targeted nanoparticles for cancer therapy. Int J Oncol. 52:389–401. 2018.PubMed/NCBI

10 

Shi JY, Ma LJ, Zhang JW, Duan M, Ding ZB, Yang LX, Cao Y, Zhou J, Fan J, Zhang X, et al: FOXP3 is a HCC suppressor gene and Acts through regulating the TGF-β/Smad2/3 signaling pathway. BMC Cancer. 17:6482017. View Article : Google Scholar : PubMed/NCBI

11 

Raoul JL, Kudo M, Finn RS, Edeline J, Reig M and Galle PR: Systemic therapy for intermediate and advanced hepatocellular carcinoma: Sorafenib and beyond. Cancer Treat Rev. 68:16–24. 2018. View Article : Google Scholar : PubMed/NCBI

12 

Nada Y, Rashad N, Eissa M, Ghonaim A, Farag K, Saadawi I, Sheha A, El Gewaity M and Abdel-Rahman O: Outcomes of treatment with sorafenib in Egyptian patients with hepatocellular carcinoma: A retrospective cohort study. Expert Rev Gastroenterol Hepatol. 12:99–107. 2018. View Article : Google Scholar : PubMed/NCBI

13 

Bruix J, Takayama T, Mazzaferro V, Chau GY, Yang J, Kudo M, Cai J, Poon RT, Han KH, Tak WY, et al: Adjuvant sorafenib for hepatocellular carcinoma after resection or ablation (STORM): A phase 3, randomised, double-blind, placebo-controlled trial. Lancet Oncol. 16:1344–1354. 2015. View Article : Google Scholar : PubMed/NCBI

14 

Kudo M: Systemic therapy for hepatocellular carcinoma: 2017 update. Oncology. 93 (Suppl 1):S135–S146. 2017. View Article : Google Scholar

15 

Yuan W, Sun Y, Liu L, Zhou B, Wang S and Gu D: Circulating lncRNAs serve as diagnostic markers for hepatocellular carcinoma. Cell Physiol Biochem. 44:125–132. 2017. View Article : Google Scholar : PubMed/NCBI

16 

Wu J, Li A, Yang J, Lu Y and Li J: Efficacy and safety of TACE in combination with sorafenib for the treatment of TACE-refractory advanced hepatocellular carcinoma in Chinese patients: A retrospective study. Onco Targets Ther. 10:2761–2768. 2017. View Article : Google Scholar : PubMed/NCBI

17 

Mondal S, Bandyopadhyay S, Ghosh MK, Mukhopadhyay S, Roy S and Mandal C: Natural products: Promising resources for cancer drug discovery. Anticancer Agents Med Chem. 12:49–75. 2012. View Article : Google Scholar : PubMed/NCBI

18 

Hu J, Zhang WD, Liu RH, Zhang C, Shen YH, Li HL, Liang MJ and Xu XK: Benzophenanthridine alkaloids from Zanthoxylum nitidum (Roxb.) DC, and their analgesic and anti-inflammatory activities. Chem Biodivers. 3:990–995. 2006. View Article : Google Scholar : PubMed/NCBI

19 

Khan H, Hadda TB and Touzani R: Diverse therapeutic potential of nitidine, a comprehensive review. Curr Drug Metab. 19:986–991. 2018. View Article : Google Scholar : PubMed/NCBI

20 

Fang Z, Tang Y, Jiao W, Xing Z, Guo Z, Wang W, Shi B, Xu Z and Liu Z: Nitidine chloride inhibits renal cancer cell metastasis via suppressing AKT signaling pathway. Food Chem Toxicol. 60:246–251. 2013. View Article : Google Scholar : PubMed/NCBI

21 

Kim LH, Khadka S, Shin JA, Jung JY, Ryu MH, Yu HJ, Lee HN, Jang B, Yang IH, Won DH, et al: Nitidine chloride acts as an apoptosis inducer in human oral cancer cells and a nude mouse xenograft model via inhibition of STAT3. Oncotarget. 8:91306–91315. 2017.PubMed/NCBI

22 

Liao J, Xu T, Zheng JX, Lin JM, Cai QY, Yu DB and Peng J: Nitidine chloride inhibits hepatocellular carcinoma cell growth in vivo through the suppression of the JAK1/STAT3 signaling pathway. Int J Mol Med. 32:79–84. 2013. View Article : Google Scholar : PubMed/NCBI

23 

Ou X, Lu Y, Liao L, Li D, Liu L, Liu H and Xu H: Nitidine chloride induces apoptosis in human hepatocellular carcinoma cells through a pathway involving p53, p21, Bax and Bcl-2. Oncol Rep. 33:1264–1274. 2015. View Article : Google Scholar : PubMed/NCBI

24 

Chen S, Yang L and Feng J: Nitidine chloride inhibits proliferation and induces apoptosis in ovarian cancer cells by activating the Fas signalling pathway. J Pharm Pharmacol. 70:778–786. 2018. View Article : Google Scholar : PubMed/NCBI

25 

Cheng Z, Guo Y, Yang Y, Kan J, Dai S, Helian M, Li B, Xu J and Liu C: Nitidine chloride suppresses epithelial-to-mesenchymal transition in osteosarcoma cell migration and invasion through Akt/GSK-3β/Snail signaling pathway. Oncol Rep. 36:1023–1029. 2016. View Article : Google Scholar : PubMed/NCBI

26 

Lin J, Shen A, Chen H, Liao J, Xu T, Liu L, Lin J and Peng J: Nitidine chloride inhibits hepatic cancer growth via modulation of multiple signaling pathways. BMC Cancer. 14:7292014. View Article : Google Scholar : PubMed/NCBI

27 

Zhang Y, Dang YW, Wang X, Yang X, Zhang R, Lv ZL and Chen G: Comprehensive analysis of long non-coding RNA PVT1 gene interaction regulatory network in hepatocellular carcinoma using gene microarray and bioinformatics. Am J Transl Res. 9:3904–3917. 2017.PubMed/NCBI

28 

Zhang Y, He RQ, Dang YW, Zhang XL, Wang X, Huang SN, Huang WT, Jiang MT, Gan XN, Xie Y, et al: Comprehensive analysis of the long noncoding RNA HOXA11-AS gene interaction regulatory network in NSCLC cells. Cancer Cell Int. 16:892016. View Article : Google Scholar : PubMed/NCBI

29 

Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J, Brunet JP, Subramanian A, Ross KN, et al: The Connectivity Map: Using gene-expression signatures to connect small molecules, genes, and disease. Science. 313:1929–1935. 2006. View Article : Google Scholar : PubMed/NCBI

30 

Tang Z, Li C, Kang B, Gao G, Li C and Zhang Z: GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017. View Article : Google Scholar

31 

Aguirre-Gamboa R, Gomez-Rueda H, Martinez-Ledesma E, Martínez-Torteya A, Chacolla-Huaringa R, Rodriguez-Barrientos A, Tamez-Peña JG and Treviño V: SurvExpress: An online biomarker validation tool and database for cancer gene expression data using survival analysis. PLoS One. 8:e742502013. View Article : Google Scholar : PubMed/NCBI

32 

Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, et al: Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 6:pl12013. View Article : Google Scholar : PubMed/NCBI

33 

Rao S and Mishra L: Targeting TGF-β signaling in liver cancer. Hepatology. Dec 14–2018.(Epub ahead of print). doi: 10.1002/hep.30426.

34 

Liu M and Wang J, Qi Q, Huang B, Chen A, Li X and Wang J: Nitidine chloride inhibits the malignant behavior of human glioblastoma cells by targeting the PI3K/AKT/mTOR signaling pathway. Oncol Rep. 36:2160–2168. 2016. View Article : Google Scholar : PubMed/NCBI

35 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

36 

Kim LH, Khadka S, Shin JA, Jung JY, Ryu MH, Yu HJ, Lee HN, Jang B, Yang IH, Won DH, et al: Nitidine chloride acts as an apoptosis inducer in human oral cancer cells and a nude mouse xenograft model via inhibition of STAT3. Oncotarget. 8:91306–91315. 2017.PubMed/NCBI

37 

Wang Z, Jiang W, Zhang Z, Qian M and Du B: Nitidine chloride inhibits LPS-induced inflammatory cytokines production via MAPK and NF-kappaB pathway in RAW 264.7 cells. J Ethnopharmacol. 144:145–150. 2012. View Article : Google Scholar : PubMed/NCBI

38 

Lamarca A, Mendiola M and Barriuso J: Hepatocellular carcinoma: Exploring the impact of ethnicity on molecular biology. Crit Rev Oncol Hematol. 105:65–72. 2016. View Article : Google Scholar : PubMed/NCBI

39 

Bupathi M, Kaseb A, Meric-Bernstam F and Naing A: Hepatocellular carcinoma: Where there is unmet need. Mol Oncol. 9:1501–1509. 2015. View Article : Google Scholar : PubMed/NCBI

40 

Zhu YJ, Zheng B, Wang HY and Chen L: New knowledge of the mechanisms of sorafenib resistance in liver cancer. Acta Pharmacol Sin. 38:614–622. 2017. View Article : Google Scholar : PubMed/NCBI

41 

Liu L, Liao JZ, He XX and Li PY: The role of autophagy in hepatocellular carcinoma: Friend or foe. Oncotarget. 8:57707–57722. 2017.PubMed/NCBI

42 

Mazzocca A, Antonaci S and Giannelli G: The TGF-β signaling pathway as a pharmacological target in a hepatocellular carcinoma. Curr Pharm Des. 18:4148–4154. 2012. View Article : Google Scholar : PubMed/NCBI

43 

Neuzillet C, de Gramont A, Tijeras-Raballand A, de Mestier L, Cros J, Faivre S and Raymond E: Perspectives of TGF-β inhibition in pancreatic and hepatocellular carcinomas. Oncotarget. 5:78–94. 2014. View Article : Google Scholar : PubMed/NCBI

44 

Yang P, Li QJ, Feng Y, Zhang Y, Markowitz GJ, Ning S, Deng Y, Zhao J, Jiang S, Yuan Y, et al: TGF-β-miR-34a-CCL22 signaling-induced Treg cell recruitment promotes venous metastases of HBV-positive hepatocellular carcinoma. Cancer Cell. 22:291–303. 2012. View Article : Google Scholar : PubMed/NCBI

45 

Li-Weber M, Palfi K, Giaisi M and Krammer PH: Dual role of the anti-inflammatory sesquiterpene lactone: Regulation of life and death by parthenolide. Cell Death Differ. 12:408–409. 2005. View Article : Google Scholar : PubMed/NCBI

46 

Kim SL, Park YR, Lee ST and Kim SW: Parthenolide suppresses hypoxia-inducible factor-1alpha signaling and hypoxia induced epithelial-mesenchymal transition in colorectal cancer. Int J Oncol. 51:1809–1820. 2017. View Article : Google Scholar : PubMed/NCBI

47 

Zhang X, Chen Q, Liu J, Fan C, Wei Q, Chen Z and Mao X: Parthenolide Promotes Differentiation of Osteoblasts Through the Wnt/β-catenin signaling pathway in inflammatory environments. J Interferon Cytokine Res. 37:406–414. 2017. View Article : Google Scholar : PubMed/NCBI

48 

Carlisi D, D'Anneo A, Angileri L, Lauricella M, Emanuele S, Santulli A, Vento R and Tesoriere G: Parthenolide sensitizes hepatocellular carcinoma cells to TRAIL by inducing the expression of death receptors through inhibition of STAT3 activation. J Cell Physiol. 226:1632–1641. 2011. View Article : Google Scholar : PubMed/NCBI

49 

Liu LM, Xiong DD, Lin P, Yang H, Dang YW and Chen G: DNA topoisomerase 1 and 2A function as oncogenes in liver cancer and may be direct targets of nitidine chloride. Int J Oncol. 53:1897–1912. 2018.PubMed/NCBI

50 

Li P, Yan S, Dong X, Li Z, Qiu Y, Ji C, Zhang J, Ji M, Li W, Wang H, et al: Cell cycle arrest and apoptosis induction activity of nitidine chloride on acute myeloid leukemia cells. Med Chem. 14:60–66. 2018. View Article : Google Scholar : PubMed/NCBI

51 

Liu N, Li P, Zang S, Liu Q, Ma D, Sun X and Ji C: Novel agent nitidine chloride induces erythroid differentiation and apoptosis in CML cells through c-Myc-miRNAs axis. PLoS One. 10:e01168802015. View Article : Google Scholar : PubMed/NCBI

52 

Zhai H, Hu S, Liu T, Wang F, Wang X, Wu G, Zhang Y, Sui M, Liu H and Jiang L: Nitidine chloride inhibits proliferation and induces apoptosis in colorectal cancer cells by suppressing the ERK signaling pathway. Mol Med Rep. 13:2536–2542. 2016. View Article : Google Scholar : PubMed/NCBI

53 

Mody K and Abou-Alfa GK: Systemic therapy for advanced hepatocellular carcinoma in an evolving landscape. Curr Treat Options Oncol. 20:32019. View Article : Google Scholar : PubMed/NCBI

54 

Abou-Alfa GK, Meyer T, Cheng AL, El-Khoueiry AB, Rimassa L, Ryoo BY, Cicin I, Merle P, Chen Y, Park JW, et al: Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N Engl J Med. 379:54–63. 2018. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 41 Issue 6

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Liu, L., Lin, P., Yang, H., Dang, Y., & Chen, G. (2019). Gene profiling of HepG2 cells following nitidine chloride treatment: An investigation with microarray and Connectivity Mapping. Oncology Reports, 41, 3244-3256. https://doi.org/10.3892/or.2019.7091
MLA
Liu, L., Lin, P., Yang, H., Dang, Y., Chen, G."Gene profiling of HepG2 cells following nitidine chloride treatment: An investigation with microarray and Connectivity Mapping". Oncology Reports 41.6 (2019): 3244-3256.
Chicago
Liu, L., Lin, P., Yang, H., Dang, Y., Chen, G."Gene profiling of HepG2 cells following nitidine chloride treatment: An investigation with microarray and Connectivity Mapping". Oncology Reports 41, no. 6 (2019): 3244-3256. https://doi.org/10.3892/or.2019.7091