Open Access

Single‑cell intratumoral stemness analysis reveals the involvement of cell cycle and DNA damage repair in two different types of esophageal cancer

  • Authors:
    • Hongjin Wu
    • Ying Li
    • Qiang Hou
    • Rongjin Zhou
    • Ziwei Li
    • Shixiu Wu
    • Juehua Yu
    • Mingfeng Jiang
  • View Affiliations

  • Published online on: April 15, 2019     https://doi.org/10.3892/or.2019.7117
  • Pages: 3201-3208
  • Copyright: © Wu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Intratumoral heterogeneity, particularly the potential cancer stemness of single cancer cells, has not yet been fully elucidated in human esophageal cancer. Single‑cell transcriptome sequencing of two types of esophageal adenocarcinoma (EAC) and two types of esophageal squamous cell carcinoma (ESCC) tissues was performed, and the intratumoral cancer stemness of the types of esophageal cancer were characterized at the single‑cell level in the present study. By comparing the transcriptomic profiles of single cancer cells with high and low stemness in individual patients, it was revealed that the overexpression of cell cycle‑associated genes in EAC cells was highly correlated with stemness, whereas overexpression of genes involved in the signaling pathways of DNA replication and DNA damage repair was significantly correlated with stemness in ESCC. High expression of these stemness‑associated genes was correlated with poor prognosis of patients. Additionally, poly [ADP‑ribose] polymerase(PARP)4 was identified as a novel cancer stemness‑associated gene in ESCC and its association with survival was validated in a cohort of 121 patients with ESCC. These findings have profound potential implications for the use of cell cycle inhibitors in EAC and PARP inhibitors in ESCC, which may provide novel mechanistic insights into the plasticity of esophageal cancer.

References

1 

Wong DJ, Segal E and Chang HY: Stemness, cancer and cancer stem cells. Cell Cycle. 7:3622–3624. 2008. View Article : Google Scholar : PubMed/NCBI

2 

Monteiro J and Fodde R: Cancer stemness and metastasis: Therapeutic consequences and perspectives. Eur J Cancer. 46:1198–1203. 2010. View Article : Google Scholar : PubMed/NCBI

3 

Khosrotehrani K and Roy E: Tell me about your stemness. I'll give your cancer risk! Cell Death Differ. 24:6–7. 2017. View Article : Google Scholar

4 

Ghisolfi L, Keates AC, Hu X, Lee DK and Li CJ: Ionizing radiation induces stemness in cancer cells. PLoS One. 7:e436282012. View Article : Google Scholar : PubMed/NCBI

5 

Hu X, Ghisolfi L, Keates AC, Zhang J, Xiang S and Lee DK: Induction of cancer cell stemness by chemotherapy. Cell Cycle. 11:2691–2698. 2012. View Article : Google Scholar : PubMed/NCBI

6 

Zhang Z, Duan Q, Zhao H, Liu T, Wu H, Shen Q, Wang C and Yin T: Gemcitabine treatment promotes pancreatic cancer stemness through the Nox/ROS/NF-kappaB/STAT3 signaling cascade. Cancer Lett. 382:53–63. 2016. View Article : Google Scholar : PubMed/NCBI

7 

Liu L, Yang L, Yan W, Zhai J, Pizzo DP, Chu P, Chin AR, Shen M, Dong C, Ruan X, et al: Chemotherapy induces breast cancer stemness in association with dysregulated monocytosis. Clin Cancer Res. 24:2370–2382. 2018. View Article : Google Scholar : PubMed/NCBI

8 

Li Y, Rogoff HA, Keates S, Gao Y, Murikipudi S, Mikule K, Leggett D, Li W, Pardee AB and Li CJ: Suppression of cancer relapse and metastasis by inhibiting cancer stemness. Proc Natl Acad Sci USA. 112:1839–1844. 2015. View Article : Google Scholar : PubMed/NCBI

9 

Liang ZM, Chen Y and Luo ML: Targeting stemness: Implications for precision medicine in breast cancer. Adv Exp Med Biol. 1026:147–169. 2017. View Article : Google Scholar : PubMed/NCBI

10 

Fodde R and Brabletz T: Wnt/beta-catenin signaling in cancer stemness and malignant behavior. Curr Opin Cell Biol. 19:150–158. 2007. View Article : Google Scholar : PubMed/NCBI

11 

Zhang X, Lou Y, Wang H, Zheng X, Dong Q, Sun J and Han B: Wnt signaling regulates the stemness of lung cancer stem cells and its inhibitors exert anticancer effect on lung cancer SPC-A1 cells. Med Oncol. 32:952015. View Article : Google Scholar : PubMed/NCBI

12 

Jin L, Vu T, Yuan G and Datta PK: STRAP promotes stemness of human colorectal cancer via epigenetic regulation of the NOTCH pathway. Cancer Res. 77:5464–5478. 2017. View Article : Google Scholar : PubMed/NCBI

13 

Lu T, Li Z, Yang Y, Ji W, Yu Y, Niu X, Zeng Q, Xia W and Lu S: The Hippo/YAP1 pathway interacts with FGFR1 signaling to maintain stemness in lung cancer. Cancer Lett. 423:36–46. 2018. View Article : Google Scholar : PubMed/NCBI

14 

Yun Z and Lin Q: Hypoxia and regulation of cancer cell stemness. Adv Exp Med Biol. 772:41–53. 2014. View Article : Google Scholar : PubMed/NCBI

15 

Liu X, Li F, Huang Q, Zhang Z, Zhou L, Deng Y, Zhou M, Fleenor DE, Wang H, Kastan MB and Li CY: Self-inflicted DNA double-strand breaks sustain tumorigenicity and stemness of cancer cells. Cell Res. 27:764–783. 2017. View Article : Google Scholar : PubMed/NCBI

16 

Carné Trécesson S, Souazé F, Basseville A, Bernard AC, Pécot J, Lopez J, Bessou M, Sarosiek KA, Letai A, Barillé-Nion S, et al: BCL-XL directly modulates RAS signalling to favour cancer cell stemness. Nat Commun. 8:11232017. View Article : Google Scholar : PubMed/NCBI

17 

Sottoriva A, Spiteri I, Piccirillo SG, Touloumis A, Collins VP, Marioni JC, Curtis C, Watts C and Tavaré S: Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci USA. 110:4009–4014. 2013. View Article : Google Scholar : PubMed/NCBI

18 

Li H, Courtois ET, Sengupta D, Tan Y, Chen KH, Goh JJL, Kong SL, Chua C, Hon LK, Tan WS, et al: Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors. Nat Genet. 49:708–718. 2017. View Article : Google Scholar : PubMed/NCBI

19 

Morgan M, Anders S, Lawrence M, Aboyoun P, Pages H and Gentleman R: ShortRead: A bioconductor package for input, quality assessment and exploration of high-throughput sequence data. Bioinformatics. 25:2607–2608. 2009. View Article : Google Scholar : PubMed/NCBI

20 

Bolger AM, Lohse M and Usadel B: Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 30:2114–2120. 2014. View Article : Google Scholar : PubMed/NCBI

21 

Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, Lennon NJ, Livak KJ, Mikkelsen TS and Rinn JL: The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 32:381–386. 2014. View Article : Google Scholar : PubMed/NCBI

22 

Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL and Pachter L: Differential gene and transcript expression analysis of RNA-seq experiments with tophat and cufflinks. Nat Protoc. 7:562–578. 2012. View Article : Google Scholar : PubMed/NCBI

23 

Dalerba P, Cho RW and Clarke MF: Cancer stem cells: Models and concepts. Annu Rev Med. 58:267–284. 2007. View Article : Google Scholar : PubMed/NCBI

24 

Wu H, Yu J, Li Y, Hou Q, Zhou R, Zhang N, Jing Z, Jiang M, Li Z, Hua Y, et al: Single-cell RNA sequencing reveals diverse intratumoral heterogeneities and gene signatures of two types of esophageal cancers. Cancer Lett. 438:133–143. 2018. View Article : Google Scholar : PubMed/NCBI

25 

Kulsum S, Sudheendra HV, Pandian R, Ravindra DR, Siddappa G, R N, Chevour P, Ramachandran B, Sagar M, Jayaprakash A, et al: Cancer stem cell mediated acquired chemoresistance in head and neck cancer can be abrogated by aldehyde dehydrogenase 1 A1 inhibition. Mol Carcinog. 56:694–711. 2017. View Article : Google Scholar : PubMed/NCBI

26 

Liu X, Wang L, Cui W, Yuan X, Lin L, Cao Q, Wang N, Li Y, Guo W, Zhang X, et al: Targeting ALDH1A1 by disulfiram/copper complex inhibits non-small cell lung cancer recurrence driven by ALDH-positive cancer stem cells. Oncotarget. 7:58516–58530. 2016.PubMed/NCBI

27 

Meng E, Mitra A, Tripathi K, Finan MA, Scalici J, McClellan S, Madeira da Silva L, Reed E, Shevde LA, Palle K, et al: ALDH1A1 maintains ovarian cancer stem cell-like properties by altered regulation of cell cycle checkpoint and DNA repair network signaling. PLoS One. 9:e1071422014. View Article : Google Scholar : PubMed/NCBI

28 

Thomas ML, de Antueno R, Coyle KM, Sultan M, Cruickshank BM, Giacomantonio MA, Giacomantonio CA, Duncan R and Marcato P: Citral reduces breast tumor growth by inhibiting the cancer stem cell marker ALDH1A3. Mol Oncol. 10:1485–1496. 2016. View Article : Google Scholar : PubMed/NCBI

29 

Yang L, Ren Y, Yu X, Qian F, Bian BS, Xiao HL, Wang WG, Xu SL, Yang J, Cui W, et al: ALDH1A1 defines invasive cancer stem-like cells and predicts poor prognosis in patients with esophageal squamous cell carcinoma. Mod Pathol. 27:775–783. 2014. View Article : Google Scholar : PubMed/NCBI

30 

Chen C, Song G, Xiang J, Zhang H, Zhao S and Zhan Y: AURKA promotes cancer metastasis by regulating epithelial-mesenchymal transition and cancer stem cell properties in hepatocellular carcinoma. Biochem Biophys Res Commun. 486:514–520. 2017. View Article : Google Scholar : PubMed/NCBI

31 

Eterno V, Zambelli A, Villani L, Tuscano A, Manera S, Spitaleri A, Pavesi L and Amato A: AurkA controls self-renewal of breast cancer-initiating cells promoting wnt3a stabilization through suppression of miR-128. Sci Rep. 6:284362016. View Article : Google Scholar : PubMed/NCBI

32 

Yang N, Wang C, Wang Z, Zona S, Lin SX, Wang X, Yan M, Zheng FM, Li SS, Xu B, et al: FOXM1 recruits nuclear aurora kinase A to participate in a positive feedback loop essential for the self-renewal of breast cancer stem cells. Oncogene. 36:3428–3440. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Zheng F, Yue C, Li G, He B, Cheng W, Wang X, Yan M, Long Z, Qiu W, Yuan Z, et al: Nuclear AURKA acquires kinase-independent transactivating function to enhance breast cancer stem cell phenotype. Nat Commun. 7:101802016. View Article : Google Scholar : PubMed/NCBI

34 

GursesCila HE, Acar M, Barut FB, Gunduz M, Grenman R and Gunduz E: Investigation of the expression of RIF1 gene on head and neck, pancreatic and brain cancer and cancer stem cells. Clin Invest Med. 39:275002016. View Article : Google Scholar : PubMed/NCBI

35 

Li P, Ma X, Adams IR and Yuan P: A tight control of Rif1 by Oct4 and Smad3 is critical for mouse embryonic stem cell stability. Cell Death Dis. 6:e15882015. View Article : Google Scholar : PubMed/NCBI

36 

Mei Y, Peng C, Liu YB, Wang J and Zhou HH: Silencing RIF1 decreases cell growth, migration and increases cisplatin sensitivity of human cervical cancer cells. Oncotarget. 8:107044–107051. 2017. View Article : Google Scholar : PubMed/NCBI

37 

Li M, Yang J, Zhou W, Ren Y, Wang X, Chen H, Zhang J, Chen J, Sun Y, Cui L, et al: Activation of an AKT/FOXM1/STMN1 pathway drives resistance to tyrosine kinase inhibitors in lung cancer. Br J Cancer. 117:974–983. 2017. View Article : Google Scholar : PubMed/NCBI

38 

Obayashi S, Horiguchi J, Higuchi T, Katayama A, Handa T, Altan B, Bai T, Bao P, Bao H, Yokobori T, et al: Stathmin1 expression is associated with aggressive phenotypes and cancer stem cell marker expression in breast cancer patients. Int J Oncol. 51:781–790. 2017. View Article : Google Scholar : PubMed/NCBI

39 

Sang Y, Li Y, Song L, Alvarez AA, Zhang W, Lv D, Tang J, Liu F, Chang Z, Hatakeyama S, et al: TRIM59 promotes gliomagenesis by inhibiting TC45 dephosphorylation of STAT3. Cancer Res. 78:1792–1804. 2018. View Article : Google Scholar : PubMed/NCBI

40 

Zhou Z, Ji Z, Wang Y, Li J, Cao H, Zhu HH and Gao WQ: TRIM59 is up-regulated in gastric tumors, promoting ubiquitination and degradation of p53. Gastroenterology. 147:1043–1054. 2014. View Article : Google Scholar : PubMed/NCBI

41 

Malta TM, Sokolov A, Gentles AJ, Burzykowski T, Poisson L, Weinstein JN, Kamińska B, Huelsken J, Omberg L, Gevaert O, et al: Machine learning identifies stemness features associated with oncogenic dedifferentiation. Cell. 173:338–354.e15. 2018. View Article : Google Scholar : PubMed/NCBI

42 

Shibue T and Weinberg RA: EMT, CSCs, and drug resistance: The mechanistic link and clinical implications. Nat Rev Clin Oncol. 14:611–629. 2017. View Article : Google Scholar : PubMed/NCBI

43 

Guiu J, Bergen DJ, De Pater E, Islam AB, Ayllon V, Gama-Norton L, Ruiz-Herguido C, González J, López-Bigas N, Menendez P, et al: Identification of Cdca7 as a novel Notch transcriptional target involved in hematopoietic stem cell emergence. J Exp Med. 211:2411–2423. 2014. View Article : Google Scholar : PubMed/NCBI

44 

Imai T, Oue N, Sentani K, Sakamoto N, Uraoka N, Egi H, Hinoi T, Ohdan H, Yoshida K, Yasui W, et al: KIF11 is required for spheroid formation by oesophageal and colorectal cancer cells. Anticancer Res. 37:47–55. 2017. View Article : Google Scholar : PubMed/NCBI

45 

Jiang M, Zhuang H, Xia R, Gan L, Wu Y, Ma J, Sun Y and Zhuang Z: KIF11 is required for proliferation and self-renewal of docetaxel resistant triple negative breast cancer cells. Oncotarget. 8:92106–92118. 2017. View Article : Google Scholar : PubMed/NCBI

46 

Venere M, Horbinski C, Crish JF, Jin X, Vasanji A, Major J, Burrows AC, Chang C, Prokop J, Wu Q, et al: The mitotic kinesin KIF11 is a driver of invasion, proliferation, and self- renewal in glioblastoma. Sci Transl Med. 7:304ra1432015. View Article : Google Scholar : PubMed/NCBI

47 

Augustin I, Dewi DL, Hundshammer J, Erdmann G, Kerr G and Boutros M: Autocrine wnt regulates the survival and genomic stability of embryonic stem cells. Sci Signal. 10:eaah68292017. View Article : Google Scholar : PubMed/NCBI

48 

Augustin I, Dewi DL, Hundshammer J, Rempel E, Brunk F and Boutros M: Immune cell recruitment in teratomas is impaired by increased wnt secretion. Stem Cell Res. 17:607–615. 2016. View Article : Google Scholar : PubMed/NCBI

49 

Ren M and Cowell JK: Constitutive notch pathway activation in murine ZMYM2-FGFR1-induced T-cell lymphomas associated with atypical myeloproliferative disease. Blood. 117:6837–6847. 2011. View Article : Google Scholar : PubMed/NCBI

50 

Ren M, Qin H, Wu Q, Savage NM, George TI and Cowell JK: Development of ZMYM2-FGFR1 driven AML in human CD34+ cells in immunocompromised mice. Int J Cancer. 139:836–840. 2016. View Article : Google Scholar : PubMed/NCBI

51 

Rubben A and Araujo A: Cancer heterogeneity: Converting a limitation into a source of biologic information. J Transl Med. 15:1902017. View Article : Google Scholar : PubMed/NCBI

52 

Mills CC, Kolb EA and Sampson VB: Recent advances of cell-cycle inhibitor therapies for pediatric cancer. Cancer Res. 77:6489–6498. 2017. View Article : Google Scholar : PubMed/NCBI

53 

Lord CJ and Ashworth A: PARP inhibitors: Synthetic lethality in the clinic. Science. 355:1152–1158. 2017. View Article : Google Scholar : PubMed/NCBI

54 

Weaver AN, Cooper TS, Rodriguez M, Trummell HQ, Bonner JA, Rosenthal EL and Yang ES: DNA double strand break repair defect and sensitivity to poly ADP-ribose polymerase (PARP) inhibition in human papillomavirus 16-positive head and neck squamous cell carcinoma. Oncotarget. 6:26995–277007. 2015. View Article : Google Scholar : PubMed/NCBI

55 

Nasuno T, Mimaki S, Okamoto M, Esumi H and Tsuchihara K: Effect of a poly(ADP-ribose) polymerase-1 inhibitor against esophageal squamous cell carcinoma cell lines. Cancer Sci. 105:202–210. 2014. View Article : Google Scholar : PubMed/NCBI

56 

Wurster S, Hennes F, Parplys AC, Seelbach JI, Mansour WY, Zielinski A, Petersen C, Clauditz TS, Münscher A, Friedl AA and Borgmann K: PARP1 inhibition radiosensitizes HNSCC cells deficient in homologous recombination by disabling the DNA replication fork elongation response. Oncotarget. 7:9732–9741. 2016. View Article : Google Scholar : PubMed/NCBI

57 

Ramalingam SS, Blais N, Mazieres J, Reck M, Jones CM, Juhasz E, Urban L, Orlov S, Barlesi F, Kio E, et al: Randomized, placebo-controlled, phase II study of veliparib in combination with carboplatin and paclitaxel for advanced/metastatic non-small cell lung cancer. Clin Cancer Res. 23:1937–1944. 2017. View Article : Google Scholar : PubMed/NCBI

58 

Zhan L, Qin Q, Lu J, Liu J, Zhu H, Yang X, Zhang C, Xu L, Liu Z, Cai J, et al: Novel poly (ADP-ribose) polymerase inhibitor, AZD2281, enhances radiosensitivity of both normoxic and hypoxic esophageal squamous cancer cells. Dis Esophagus. 29:215–223. 2016. View Article : Google Scholar : PubMed/NCBI

59 

Yasukawa M, Fujihara H, Fujimori H, Kawaguchi K, Yamada H, Nakayama R, Yamamoto N, Kishi Y, Hamada Y and Masutani M: Synergetic effects of PARP inhibitor AZD2281 and cisplatin in oral squamous cell carcinoma in vitro and in vivo. Int J Mol Sci. 17:2722016. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 41 Issue 6

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Wu, H., Li, Y., Hou, Q., Zhou, R., Li, Z., Wu, S. ... Jiang, M. (2019). Single‑cell intratumoral stemness analysis reveals the involvement of cell cycle and DNA damage repair in two different types of esophageal cancer. Oncology Reports, 41, 3201-3208. https://doi.org/10.3892/or.2019.7117
MLA
Wu, H., Li, Y., Hou, Q., Zhou, R., Li, Z., Wu, S., Yu, J., Jiang, M."Single‑cell intratumoral stemness analysis reveals the involvement of cell cycle and DNA damage repair in two different types of esophageal cancer". Oncology Reports 41.6 (2019): 3201-3208.
Chicago
Wu, H., Li, Y., Hou, Q., Zhou, R., Li, Z., Wu, S., Yu, J., Jiang, M."Single‑cell intratumoral stemness analysis reveals the involvement of cell cycle and DNA damage repair in two different types of esophageal cancer". Oncology Reports 41, no. 6 (2019): 3201-3208. https://doi.org/10.3892/or.2019.7117