Open Access

ARPC2 promotes breast cancer proliferation and metastasis

  • Authors:
    • Zhongle Cheng
    • Wei Wei
    • Zhengshen Wu
    • Jing Wang
    • Xiaojuan Ding
    • Youjing Sheng
    • Yinli Han
    • Qiang Wu
  • View Affiliations

  • Published online on: April 12, 2019     https://doi.org/10.3892/or.2019.7113
  • Pages: 3189-3200
  • Copyright: © Cheng et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 4.0].

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Actin-related protein 2/3 complex (ARPC2) is an actin‑binding component involved in the regulation of actin polymerization. It mediates the formation of branched actin networks and contacts the mother actin filament. Migration and invasion are key processes which enable tumor cells to infiltrate blood vessels or lymphatic vessels, and the actin pathway plays a very important role. Given that ARPC2 is critical to this progression, the present study focused on ARPC2 activity in breast cancer (BrCa) cell invasion and migration. Limited data are available on the expression and role of ARPC2 proteins in breast carcinomas. We screened the Oncomine database for messenger RNAs (mRNAs) that are upregulated in BrCa and found that ARPC2 was one of the most consistently involved mRNAs in BrCa. The analysis of immunohistochemical data revealed that ARPC2 expression was higher in breast cancerous tissues than in adjacent non‑cancerous tissues. In addition, ARPC2 was highly associated with the tumor stage, nodal metastasis, and overall survival of patients with BrCa. We performed siRNA‑ARPC2 transfection to investigate the effect of ARPC2 on the proliferation, migration, invasion and arrest of BrCa cells. It was revealed that ectopic ARPC2 expression significantly upregulated N‑cadherin, vimentin, ZEB1, MMP‑9 and MMP‑3 expression and also activated the TGF‑β pathway to contribute to epithelial‑mesenchymal transition (EMT). These results collectively indicated that ARPC2 promoted the tumorigenesis of breast carcinoma and the initiation of EMT. Therefore, ARPC2 was revealed to be a potential therapeutic target in patients with BrCa.

References

1 

DeSantis CE, Ma J, Goding Sauer A, Newman LA and Jemal A: Breast cancer statistics, 2017, racial disparity in mortality by state. CA Cancer J Clin. 67:439–448. 2017. View Article : Google Scholar : PubMed/NCBI

2 

Ngamcherdtrakul W, Castro DJ, Gu S, Morry J, Reda M, Gray JW and Yantasee W: Current development of targeted oligonucleotide-based cancer therapies: Perspective on HER2-positive breast cancer treatment. Cancer Treat Rev. 45:19–29. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Maruti SS, Willett WC, Feskanich D, Rosner B and Colditz GA: A prospective study of age-specific physical activity and premenopausal breast cancer. J Natl Cancer Inst. 100:728–737. 2008. View Article : Google Scholar : PubMed/NCBI

4 

Hiatt RA, Klabunde C, Breen N, Swan J and Ballard-Barbash R: Cancer screening practices from National Health Interview Surveys: Past, present, and future. J Natl Cancer Inst. 94:1837–1846. 2002. View Article : Google Scholar : PubMed/NCBI

5 

Slatkin M: Linkage disequilibrium-understanding the evolutionary past and mapping the medical future. Nat Rev Genet. 9:477–485. 2008. View Article : Google Scholar : PubMed/NCBI

6 

Kim IA, No M, Lee JM, Shin JH, Oh JS, Choi EJ, Kim IH, Atadja P and Bernhard EJ: epigenetic modulation of radiation response in human cancer cells with activated EGFR or HER-2 signaling: Potential role of histone deacetylase 6. Radiother Oncol. 92:125–132. 2009. View Article : Google Scholar : PubMed/NCBI

7 

Lakhani SR, Van De Vijver MJ, Jacquemier J, Anderson TJ, Osin PP, McGuffog L and Easton DF: The pathology of familial breast cancer: Predictive value of immunohistochemical markers estrogen receptor, progesterone receptor, HER-2, and p53 in patients with mutations in BRCA1 and BRCA2. J Clin Oncol. 20:2310–2318. 2002. View Article : Google Scholar : PubMed/NCBI

8 

Kyndi M, Sørensen FB, Knudsen H, Overgaard M, Nielsen HM and Overgaard J; Danish Breast Cancer Cooperative Group, : Estrogen receptor, progesterone receptor, HER-2, and response to postmastectomy radiotherapy in high-risk breast cancer: The Danish Breast Cancer Cooperative Group. J Clin Oncol. 26:1419–1426. 2008. View Article : Google Scholar : PubMed/NCBI

9 

Jeng RL, Goley ED, D'Alessio JA, Chaga OY, Svitkina TM, Borisy GG, Heinzen RA and Welch MD: A Rickettsia WASP-like protein activates the Arp2/3 complex and mediates actin-based motility. Cell Microbiol. 6:761–769. 2004. View Article : Google Scholar : PubMed/NCBI

10 

Goley ED and Welch MD: The ARP2/3 complex: An actin nucleator comes of age. Nat Rev Mol Cell Biol. 7:713–726. 2006. View Article : Google Scholar : PubMed/NCBI

11 

Frank DJ, Hopmann R, Lenartowska M and Miller KG: Capping protein and the Arp2/3 complex regulate nonbundle actin filament assembly to indirectly control actin bundle positioning during Drosophila melanogaster bristle development. Mol Biol Cell. 17:3930–3939. 2006. View Article : Google Scholar : PubMed/NCBI

12 

Al Ghouleh I, Rodríguez A, Pagano PJ and Csányi G: Proteomic analysis identifies an NADPH oxidase 1 (Nox1)-mediated role for actin-related protein 2/3 complex subunit 2 (ARPC2) in promoting smooth muscle cell migration. Int J Mol Sci. 14:20220–20235. 2013. View Article : Google Scholar : PubMed/NCBI

13 

Zhang J, Liu Y, Yu CJ, Dai F, Xiong J, Li HJ, Wu ZS, Ding R and Wang H: Role of ARPC2 in human gastric cancer. Mediators Inflamm. 2017:54328182017. View Article : Google Scholar : PubMed/NCBI

14 

Moreno-Bueno G, Portillo F and Cano A: Transcriptional regulation of cell polarity in EMT and cancer. Oncogene. 27:6958–6969. 2008. View Article : Google Scholar : PubMed/NCBI

15 

Wright JA, Richer JK and Goodall GJ: microRNAs and EMT in mammary cells and breast cancer. J Mammary Gland Biol Neoplasia. 15:213–223. 2010. View Article : Google Scholar : PubMed/NCBI

16 

Creighton CJ, Chang JC and Rosen JM: Epithelial-mesenchymal transition (EMT) in tumor-initiating cells and its clinical implications in breast cancer. J Mammary Gland Biol Neoplasia. 15:253–260. 2010. View Article : Google Scholar : PubMed/NCBI

17 

Hardy KM, Booth BW, Hendrix MJ, Salomon DS and Strizzi L: ErbB/EGF signaling and EMT in mammary development and breast cancer. J Mammary Gland Biol Neoplasia. 15:191–199. 2010. View Article : Google Scholar : PubMed/NCBI

18 

Doble BW and Woodgett JR: Role of glycogen synthase kinase-3 in cell fate and epithelial-mesenchymal transitions. Cells Tissues Organs. 185:73–84. 2007. View Article : Google Scholar : PubMed/NCBI

19 

Xu J, Lamouille S and Derynck R: TGF-beta-induced epithelial to mesenchymal transition. Cell Res. 19:156–172. 2009. View Article : Google Scholar : PubMed/NCBI

20 

Kudo-Saito C, Shirako H, Takeuchi T and Kawakami Y: Cancer metastasis is accelerated through immunosuppression during snail-induced EMT of cancer cells. Cancer Cell. 15:195–206. 2009. View Article : Google Scholar : PubMed/NCBI

21 

Thiery JP, Acloque H, Huang RY and Nieto MA: Epithelial-mesenchymal transitions in development and disease. Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI

22 

Gavert N and Ben-Ze'ev A: Epithelial-mesenchymal transition and the invasive potential of tumors. Trends Mol Med. 14:199–209. 2008. View Article : Google Scholar : PubMed/NCBI

23 

Ma XJ, Dahiya S, Richardson E, Erlander M and Sgroi DC: Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Res. 11:R72009. View Article : Google Scholar : PubMed/NCBI

24 

Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y, et al: The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 486:346–352. 2012. View Article : Google Scholar : PubMed/NCBI

25 

Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, et al: Molecular portraits of human breast tumours. Nature. 406:747–752. 2000. View Article : Google Scholar : PubMed/NCBI

26 

Zhao H, Langerod A, Ji Y, Nowels KW, Nesland JM, Tibshirani R, Bukholm IK, Kåresen R, Botstein D, Børresen-Dale AL, et al: Different gene expression patterns in invasive lobular and ductal carcinomas of the breast. Mol Biol Cell. 15:2523–2536. 2004. View Article : Google Scholar : PubMed/NCBI

27 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

28 

Abella JV, Galloni C, Pernier J, Barry DJ, Kjær S, Carlier MF and Way M: Isoform diversity in the Arp2/3 complex determines actin filament dynamics. Nat Cell Biol. 18:76–86. 2016. View Article : Google Scholar : PubMed/NCBI

29 

Robinson R, Turbedsky K, Kaiser D, Marchand J, Higgs H, Choe S and Pollard T: Crystal structure of Arp2/3 complex. Science. 294:1679–1684. 2001. View Article : Google Scholar : PubMed/NCBI

30 

Daugherty KM and Goode BL: Functional surfaces on the p35/ARPC2 subunit of Arp2/3 complex required for cell growth, actin nucleation, and endocytosis. J Biol Chem. 283:16950–16959. 2008. View Article : Google Scholar : PubMed/NCBI

31 

Saedler R, Mathur N, Srinivas BP, Kernebeck B, Hülskamp M and Mathur J: Actin control over microtubules suggested by DISTORTED2 encoding the Arabidopsis ARPC2 subunit homolog. Plant Cell Physiol. 45:813–822. 2004. View Article : Google Scholar : PubMed/NCBI

32 

Franke A, Balschun T, Karlsen TH, Sventoraityte J, Nikolaus S, Mayr G, Domingues FS, Albrecht M, Nothnagel M, Ellinghaus D, et al: Sequence variants in IL10, ARPC2 and multiple other loci contribute to ulcerative colitis susceptibility. Nat Genet. 40:1319–1323. 2008. View Article : Google Scholar : PubMed/NCBI

33 

Shapiro IM, Cheng AW, Flytzanis NC, Balsamo M, Condeelis JS, Oktay MH, Burge CB and Gertler FB: An EMT-driven alternative splicing program occurs in human breast cancer and modulates cellular phenotype. PLoS Genet. 7:e10022182011. View Article : Google Scholar : PubMed/NCBI

34 

Cannito S, Novo E, di Bonzo LV, Busletta C, Colombatto S and Parola M: Epithelial-mesenchymal transition: From molecular mechanisms, redox regulation to implications in human health and disease. Antioxid Redox Signal. 12:1383–1430. 2010. View Article : Google Scholar : PubMed/NCBI

35 

Kessenbrock K, Plaks V and Werb Z: Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell. 141:52–67. 2010. View Article : Google Scholar : PubMed/NCBI

36 

Mendez MG, Kojima S and Goldman RD: Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition. FASEB J. 24:1838–1851. 2010. View Article : Google Scholar : PubMed/NCBI

37 

Prasain N and Stevens T: The actin cytoskeleton in endothelial cell phenotypes. Microvasc Res. 77:53–63. 2009. View Article : Google Scholar : PubMed/NCBI

38 

Hur W, Rhim H, Jung CK, Kim JD, Bae SH, Jang JW, Yang JM, Oh ST, Kim DG, Wang HJ, et al: SOX4 overexpression regulates the p53-mediated apoptosis in hepatocellular carcinoma: Clinical implication and functional analysis in vitro. Carcinogenesis. 31:1298–1307. 2010. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 41 Issue 6

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Cheng, Z., Wei, W., Wu, Z., Wang, J., Ding, X., Sheng, Y. ... Wu, Q. (2019). ARPC2 promotes breast cancer proliferation and metastasis. Oncology Reports, 41, 3189-3200. https://doi.org/10.3892/or.2019.7113
MLA
Cheng, Z., Wei, W., Wu, Z., Wang, J., Ding, X., Sheng, Y., Han, Y., Wu, Q."ARPC2 promotes breast cancer proliferation and metastasis". Oncology Reports 41.6 (2019): 3189-3200.
Chicago
Cheng, Z., Wei, W., Wu, Z., Wang, J., Ding, X., Sheng, Y., Han, Y., Wu, Q."ARPC2 promotes breast cancer proliferation and metastasis". Oncology Reports 41, no. 6 (2019): 3189-3200. https://doi.org/10.3892/or.2019.7113