Upregulation of GRIM-19 suppresses the growth of oral squamous cell carcinoma in vitro and in vivo

MINGHE LI1,2, ZHIHONG LI3, CHONGYANG LIANG1, CHENGMIN HAN2, WEI HUANG1 and FEI SUN1

1Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130022; 2Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun, Jilin 130021; 3Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China

Received May 19, 2014; Accepted July 21, 2014

DOI: 10.3892/or.2014.3423

Abstract. Constitutive activation of the signal transducer and activator of transcription 3 (STAT3) and its upregulation contribute to the progression and metastasis of several different tumor types. The gene associated with retinoid-interferon-induced mortality-19 (GRIM-19) is known to functionally interact with STAT3 and inhibit its transcriptional activity. It has been reported that upregulation of genes associated with GRIM-19 can significantly reduce the tumor growth of several types of tumors. However, little is known in regards to its role in oral squamous cell carcinoma (OSCC). In the present study, a recombinant eukaryotic expression plasmid carrying GRIM-19 was constructed to evaluate its effects on OSCC cancer growth. Upregulation of GRIM-19 in OSCC cells significantly inhibited cell proliferation, migration and invasion in vitro and suppressed tumor growth in vivo. Moreover, we found that upregulation of GRIM-19 reduced cyclin D1, Bcl-2, vascular endothelial growth factor (VEGF) and matrix metalloproteinase-2 (MMP-2) expression whose protein is involved in STAT3 activation. Taken together, these findings suggest that GRIM-19 plays an inhibitory role in the progression of OSCC, and contribute to the future development of STAT3-based gene therapeutic approaches for OSCC.

Introduction

Oral squamous cell carcinoma (OSCC) is the most common malignant neoplasm of the oral cavity and represents approximately 90% of all oral malignancies (1,2). Although there have been developments in surgical strategies and in clinical care, the overall incidence and mortality associated with OSCC have increased as OSCC is commonly detected at a late stage when therapeutic options are limited (3). Extensive research has clarified that the occurrence and development of OSCC are associated with various molecules (4,5). Thus, there is a need to understand the molecular mechanism of OSCC and to develop sensitive and specific molecular markers and novel therapies.

The genes associated with the retinoid-interferon-induced mortality (GRIM) apoptosis-related gene family potentially represent a novel group of tumor suppressors that may act as candidates for use as biological markers and new targets for drug development (6). GRIM-19 is a new member of the GRIM family located on human chromosome 19p13.1, and its overexpression significantly increases cell death. It was originally isolated and identified as a growth suppressive gene product involved in the interferon (IFN)-β/-all-trans retinoic acid (RA)-induced cell death pathway using a genetic screen (6). A larger number of studies have shown that loss of GRIM-19 expression occurs in several human carcinomas including liver, kidney, cervix, lung and laryngeal, and mutations in the GRIM-19 gene have been found in thyroid tumors and head and neck cancers (7-12). It has been shown that GRIM-19 acts as a potential type of tumor suppressor associated with cancer cell apoptosis, proliferation, migration, invasion and growth inhibition in vitro (9,12-15). In addition, recently, research has demonstrated that upregulation of GRIM-19 suppressed cellular growth and tumor formation of cervical, prostate cancer and lung carcinomas in nude mice (12,13,16). Notably, GRIM-19 has been shown to bind to the signal transducer and activator of transcription 3 (STAT3) by transactivation domain (TAD) (17) and inhibits STAT3 transcription (18). STAT3-GRIM-19 binding promotes tumor apoptosis and inhibits tumor growth and survival and downregulates expression of downstream genes, such as cyclin B1, cyclin D1, c-Myc, Bcl-xL, Mcl-1, Bcl-2, vascular endothelial growth factor (VEGF) and matrix metalloproteinase-2 (MMP-2) (13,19-21).

Collectively, these studies suggest that GRIM-19 could serve as a novel type of tumor suppressor and inhibit tumor growth in various types of cancer. However, the detailed role in tumor cell proliferation or tumor growth in OSCC have not been clarified. Therefore, the aim of the present study was to

Correspondence to: Professor Fei Sun, Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130022, P.R. China
E-mail: sunfei408@sina.com

Key words: oral squamous cell carcinoma, GRIM-19, STAT3, tumor growth
investigate the effects of GRIM-19 on cell proliferation, apoptosis, migration and invasion in OSCC cells. We also assessed the effect of the upregulation of GRIM-19 on tumor growth in vitro and in vivo of OSCC.

Materials and methods

Construction of the GRIM-19 eukaryotic expression plasmid.
Total RNA of OSCC tumor tissues was extracted as a template for amplification of the GRIM-19 gene using the RT-PCR method with the following two oligonucleotide sequences serving as primers: sense, 5'-TTGGCAAGTTGATTGATC3' and antisense, 5'-AGACCCAGAAGGACCGC-3' which also encode two restriction sites EcoRI and XhoI. The PCR reaction procedure was performed as follows. Initial denaturation was carried out at 94°C for 3 min followed by 32 cycles of a denaturation step at 94°C for 30 sec, an annealing step at 55°C for 30 sec and an extension step at 72°C for 1 min. Finally, a 10-min extension step at 72°C was performed to end the reaction. The fragment was then cloned into the pMD 19-T vector (Takara Biotechnology, Dalian, China) for sequence analysis. The identified fragment was then cut out and ligated into the corresponding sites of the eukaryotic expression plasmid pVAX1.0 (Invitrogen, Carlsbad, CA, USA), and named pGRIM-19.

Cell culture and transfection of the recombinant plasmid.
The human OSCC cell line HSC3 was purchased from the Cell Bank of the Type Culture Collection of the Chinese Academy of Sciences, Shanghai Institute of Cell Biology (Shanghai China). HSC3 cells were cultured in DMEM/F-12 medium (Invitrogen) containing 10% fetal bovine serum (FBS; Sigma-Aldrich, Germany), 1% fungicid and penicillin/streptomycin (Biochrom, Berlin, Germany) at 37°C in a humidified atmosphere containing 5% CO₂. The pGRIM-19 and pVAX1 blank plasmids were extracted using a plasmid extraction kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. HSC3 cells were transfected with the plasmids using Lipofectamine™ 2000 (Invitrogen, Carlsbad, CA, USA), and named pGRIM-19.

Western blotting. Total protein was extracted from the HSC3 cells at 72 h after transfection. The protein quantity was adjusted to 1x10⁷/ml. Subsequently, 95 µl of the cell suspension was mixed with 5 µl of Lipofectamine 2000 followed by incubation for 72 h. The cells were then incubated with 20 µl of MTT labeling reagent for 4 h, followed by the addition of 200 µl solubilization solution into each well. The plates were maintained in a dark room overnight, and the optical density (OD) of each sample was measured at a 490-nm test wavelength using an ELISA multi-well spectrophotometer (Molecular Devices Corp., Sunnyvale, CA, USA). The experiment was repeated three times.

Cell proliferation assay. Cell proliferation was assessed using an MTT cell proliferation kit (Roche Applied Science, Indianapolis, IN, USA) according to the manufacturer’s instructions. Briefly, the cells were seeded in 96-well microplates at a density of 2.0x10⁴ cells/well. The cells were divided into three groups: control (PBS group), blank plasmid control and p-GRIM-19. Transfection was performed with 6 µg of plasmid and 5 µl of Lipofectamine 2000 followed by incubation for 72 h. The cells were then incubated with 20 µl of MTT for 4 h, followed by the addition of 200 µl solubilization solution into each well. The plates were maintained in a dark room overnight, and the optical density (OD) of each sample was measured at a 490-nm test wavelength using an ELISA multi-well spectrophotometer (Molecular Devices Corp., Sunnyvale, CA, USA). The experiment was repeated three times.

Cell apoptosis. HSC3 cells in the logarithmic growth phase were transfected with p-GRIM-19 and pVAX1 when cells reached a logarithmic growth phase. Subsequently, the cells were incubated at 37°C for 10 days, and the medium was replaced every 3 days. After washing twice with PBS, the colonies were fixed with ice methanol for 30 min and stained with Giemsa for 10 min. Then, the visible colonies were counted.

Wound-healing assay. A wound-healing assay was performed to assess the effect of GRIM-19 on cell migration. In brief, 1x10⁵ HSC3 cells were plated in 12-well plates in complete growth medium. After 24 h of growth, a scratch was made through the confluent cell monolayer, and the cells were then treated with the pGRIM-19 plasmid and pVAX1 blank plasmid in 3 ml of complete medium, respectively. At 48 h post treatment, cells were stained with hematoxylin and eosin (H&E).
Cells invading the wound line were observed under an inverted phase-contrast microscope (Leica DMR, Germany).

Invasion assays. To assess the effect of GRIM-19 on cell invasion, the invasiveness in vitro was measured using BD BioCoat™ Matrigel invasion chambers (Becton-Dickinson Labware, Bedford, MA, USA) according to the manufacturer’s instructions. In brief, filters were pre-coated on the upper side with Matrigel provided in the kits (1 mg/ml). The lower chamber was filled with culture media containing 10% FBS. HSC3 cells (3x10⁵) treated with the indicated plasmid in low serum media were placed in the inner chamber and KGM was used as a chemoattractant. Plates were incubated for 16 h at 37°C. The cells that invaded to the lower side of the filter were observed under a Nikon phase-contrast microscope and counted in >10 fields of view at x200 magnification. The assay was conducted in triplicate.

In addition, we also detected MMP-9 and MMP-2 protein expression by western blotting as an additional indicator of invasion and migration.

Tumor growth in vivo. A total of 30 female BALB nude mice aged 4-6 weeks (18-20 g) were purchased from the Institute of Laboratory Animal Science, Jilin University (Changchun, China), SLAC Animal Laboratory Center. Then, 2x10⁶ (100 µl) of HSC3 cells were subcutaneous injected into the left abdominal wall. The tumor size was measured daily beginning 7 days after injection. The tumor volume (V) was calculated as follows: \(V = 0.5236 \times width^2 \times length \). Approximately 20 days after inoculation of the HSC3 cells, the average tumor volume was 108.28±8.23 mm³. The cancer cell-bearing nude mice were then randomly divided into three groups (n=10): i) control group, ii) pGRIM-19 group and iii) pVAX1 group. In the control group, nude mice were injected with saline. The pGRIM-19 and pVAX1 groups were inoculated with 30 µg/50 µl per mouse via i.t. injection of the plasmids pGRIM-19 and pVAX1 one time a week for 21 days, respectively. Mice were sacrificed 7 days after the final plasmid injection. Tumor tissue was excised, and the volume and weight were measured. Parts of each tumor tissue were wax embedded for H&E staining to study cell the volume and weight were measured. Parts of each tumor tissue were wax embedded for H&E staining to study cell apoptosis induction of cell apoptosis ELISA to determine the potential mechanism involved in the induction of cell apoptosis in vitro following upregulation of GRIM-19. The results showed that caspase-3, -8 and -10 activities were significantly increased in the pGRIM-19 plasmid treatment group, compared to these values in the the control and pVAX1 groups (P<0.05; Fig. 3B-D). These results suggest that upregulation of GRIM-19 inhibits cell proliferation and induces cell apoptosis in OSCC cells.

Upregulation of GRIM-19 inhibits cell proliferation and colony formation in HSC3 cells. To investigate whether upregulation of GRIM-19 affects cell proliferation, an MTT assay was performed for 72 h following transfection of the HSC3 cells with the plasmids. Cell proliferation in the pGRIM-19 group was significantly diminished compared to that of the control and pVAX1 groups (P<0.05). There was no significant difference between the control group and pVAX1 group (P=0.05).

In addition, the effects of the upregulation of GRIM-19 on OSCC cell colony formation ability were assessed. As shown in Fig. 2B, overexpression of GRIM-19 reduced the number of colonies formed when compared to the numbers in the blank vector and control groups (P<0.05).

Upregulation of GRIM-19 induces cell apoptosis. To investigate whether upregulation induces cell apoptosis, we analyzed the apoptosis rate 72 h after treatment with the pGRIM-19 plasmid. HSC3 cells treated with the pGRIM-19 plasmid exhibited significantly increased cell apoptosis when compared to that in the blank vector and control groups (P<0.05). Next, caspase-3, -8 and -10 activities were detected using ELISA to determine the potential mechanism involved in the induction of cell apoptosis in vitro following upregulation of GRIM-19. The results showed that caspase-3, -8 and -10 activities were significantly decreased in the pGRIM-19 plasmid treatment group, compared to these values in the the control and blank vector groups (P<0.05; Fig. 3B-D). These results suggest that upregulation of GRIM-19 inhibits cell proliferation and induces cell apoptosis in OSCC cells.

Upregulation of GRIM-19 inhibits cell migration and inva -sion. To ascertain the inhibitory effect of the upregulation of GRIM-19 on OSCC cell motility in vitro, a wound-healing assay was performed. As shown in Fig. 4A, the percentage of cells in the pGRIM-19 group that migrated was significantly lower than these percentages in the control and the blank vector groups when HSC3 cells were treated with the pGRIM-19 plasmid for 72 h (P<0.05).

The ability of the upregulation of GRIM-19 to reduce the invasiveness of OSCC cells was further investigated by the Transwell system assay. Invasion was also significantly decreased in the pGRIM-19 plasmid treatment group compared to the control and the blank vector groups (P<0.05; Fig. 4B).

Results

The pGRIM-19 plasmid affects GRIM-19 expression in OSCC HSC3 cells. GRIM-19 was amplified by RT-PCR and was then cloned into pVAX1.0. The resulting plasmids were identified by sequence analysis. The results of the sequence alignment showed that the GRIM-19 gene shares a sequence homology of 100% with the sequence (AF155662) of GRIM-19 published in GenBank. The pGRIM-19 and pVAX1 blank plasmids were transfected into HSC3 cells, and GRIM-19 protein and mRNA expression was determined using western blotting and RT-PCR analyses, respectively. Result of RT-PCR showed that GRIM-19 expression at the mRNA level was significantly increased in the HSC3 cells following transfection with the pGRIM-19 plasmid as compared to the control and pVAX1 groups (P<0.05; Fig. 1A and B). At the protein level, GRIM-19 was significant upregulated in the HSC3 cells following transfection with the pGRIM-19 plasmid as compared to the control and pVAX1 groups (P<0.05; Fig. 1C and D).

Upregulation of GRIM-19 inhibits cell proliferation and colony formation in HSC3 cells. To investigate whether upregulation of GRIM-19 affects cell proliferation, an MTT assay was performed for 72 h following transfection of the HSC3 cells with the plasmids. Cell proliferation in the pGRIM-19 group was significantly diminished compared to that of the control and pVAX1 groups (P<0.05; Fig. 2A). There was no significance different between the control group and pVAX1 group (P=0.05).

In addition, the effects of the upregulation of GRIM-19 on OSCC cell colony formation ability were assessed. As shown in Fig. 2B, overexpression of GRIM-19 reduced the number of colonies formed when compared to the numbers in the blank vector and control groups (P<0.05).

Upregulation of GRIM-19 induces cell apoptosis. To investigate whether upregulation induces cell apoptosis, we analyzed the apoptosis rate 72 h after treatment with the pGRIM-19 plasmid. HSC3 cells treated with the pGRIM-19 plasmid exhibited significantly increased cell apoptosis when compared to that in the blank vector and control groups (P<0.05; Fig. 3A). Next, caspase-3, -8 and -10 activities were detected using ELISA to determine the potential mechanism involved in the induction of cell apoptosis in vitro following upregulation of GRIM-19. The results showed that caspase-3, -8 and -10 activities were significantly decreased in the pGRIM-19 plasmid treatment group, compared to these values in the the control and blank vector groups (P<0.05; Fig. 3B-D). These results suggest that upregulation of GRIM-19 inhibits cell proliferation and induces cell apoptosis in OSCC cells.

Upregulation of GRIM-19 inhibits cell migration and invasion. To ascertain the inhibitory effect of the upregulation of GRIM-19 on OSCC cell motility in vitro, a wound-healing assay was performed. As shown in Fig. 4A, the percentage of cells in the pGRIM-19 group that migrated was significantly lower than these percentages in the control and the blank vector groups when HSC3 cells were treated with the pGRIM-19 plasmid for 72 h (P<0.05).

The ability of the upregulation of GRIM-19 to reduce the invasiveness of OSCC cells was further investigated by the Transwell system assay. Invasion was also significantly decreased in the pGRIM-19 plasmid treatment group compared to the control and the blank vector groups (P<0.05; Fig. 4B).
To determine the potential mechanism involved in the inhibition of cell invasion \textit{in vitro} following upregulation of GRIM-19, MMP-2 and MMP-9 protein expression was determined by western blotting. Western blotting revealed a significant decrease in MMP-2 and MMP-9 protein levels in the pGRIM-19 group when compared to these levels in the control and the blank vector groups (P<0.05; Fig. 4C and D).

\textbf{GRIM-19 regulates STAT3 target genes in OSCC cells.} It has been previously demonstrated that GRIM-19 binds to the STAT3 gene and inhibits its transcription. Therefore, we investigated whether upregulation of GRIM-19 affects STAT3 expression by western blotting. Upregulation of GRIM-19 significantly decreased STAT3 expression in the OSCC cells when compared to the expression level in the control and the blank vector groups (P<0.05; Fig. 5A and B). STAT3 is known to upregulate the expression of genes, such as VEGF, Bcl-2 and cyclin D1, which are associated with angiogenesis, anti-apoptosis and increased tumor cell proliferation. We also examined whether upregulation of GRIM-19 affects expression of these genes. Expression of GRIM-19 significantly suppressed the expression of VEGF, Bcl-2 and cyclin D1 when compared to levels in the control and the blank vector groups (P<0.05; Fig. 5C and D).

\textit{Upregulation of GRIM-19 inhibits tumor growth in a mouse model.} We assessed the \textit{in vivo} therapeutic efficacy of the upregulation of GRIM-19 in female BALB mice bearing...
Figure 3. Upregulation of GRIM-19 expression induces cancer cell apoptosis in vitro. (A) Cell apoptosis of HSC3 cells was determined following treatment with the GRIM-19 plasmid. (B) Caspase-3, (C) caspase-8 and (D) caspase-10 activity in the HSC3 cells was determined following treatment with the indicated plasmid. *P<0.05 vs. control. GRIM-19, retinoid-interferon-induced mortality-19.

Figure 4. Upregulation of GRIM-19 expression inhibits cancer cell migration and invasion in vitro. (A) Cell migration and (B) cell invasion of HSC3 cells were determined following treatment with the indicated plasmid. (C and D) Western blotting was used to assess expression of MMP-2 and MMP-9 using antibodies against MMP-2 and MMP-9. β-actin was used as an internal control. *P<0.05 vs. control. GRIM-19, retinoid-interferon-induced mortality-19; MMP, matrix metalloproteinase.
LI et al: UPREGULATION OF GRIM-19 SUPPRESSES THE GROWTH OF OSCC

Figure 5. Upregulation of GRIM-19 expression inhibits STAT3 target gene in HSC3 cells. (A and B) Western blotting of the expression of GRIM-19 and STAT3 in HSC3 cells following treatment with the indicated plasmid. (C and D) Western blotting of the expression of STAT3 target genes (Bcl-2, cyclin D1, and VEGF) in HSC3 cells using specific antibodies against the indicated proteins following treatment with the indicated plasmid. Blots were reprobed for β-actin to normalize each lane for protein content. *P<0.05 vs. control. GRIM-19, retinoid-interferon-induced mortality-19; VEGF, vascular endothelial growth factor.

Figure 6. Upregulation of GRIM-19 expression suppresses tumor growth in mice bearing HSC3 cell tumors. (A) Tumor weight was measured at the end of 7 days. (B) Tumor volume was measured on day 7, 14, and 21. (C) MTT assay of the proliferation of splenocytes from mice. (D) Cell apoptosis was determined in vivo by TUNEL. *P<0.05 vs control. GRIM-19, retinoid-interferon-induced mortality-19.
HSC3 tumor cells. The tumor weight in the pGRIM-19 group was lower than that in the control and the blank vector groups (P < 0.05; Fig. 6A). In addition, we also found that the tumor volume following treatment with the pGRIM-19 plasmid was significantly smaller for HSC3 tumor cells compared to the control and the blank vector groups at different times (P < 0.05; Fig. 6B).

To assess the efficacy of GRIM-19 in modulating splenocyte proliferation, an MTT assay were performed. As shown in Fig. 6C, the inhibitory rate of the pGRIM-19 plasmic group was higher than the control and the blank vector groups (P < 0.05). In addition, we also determined tumor tissue cell apoptosis in vivo by TUNEL. The results showed that upregulation of GRIM-19 significantly induced cell apoptosis compared to the control and the blank vector groups (P < 0.05; Fig. 6D). Taken together, these results demonstrate that upregulation of GRIM-19 suppresses tumor growth of OSCC in vivo.

Discussion

The development and progression of human cancer involves multiple genetic changes. Mutations and/or the loss of genes coding for transcription factors and apoptotic machinery have been implicated in tumor growth (26, 27). GRIM-19 was first identified as a novel cell death-regulatory gene induced by a combination of interferon-β and retinoic acid (6). It has been shown that GRIM-19 is involved in numerous cellular functions, including apoptosis and cell proliferation (6, 18).

In the present study, upregulation of GRIM-19 resulted in a significant decrease in the cell proliferation and colony formation rate of OSCC cells. In addition, our results showed that upregulation of GRIM-19 increased the cell apoptosis rate of OSCC cells. Apoptosis has been reported to play an important role during malignant transformation of normal cells (28, 29). These findings, along with ours, suggest that dysregulation of GRIM-19 may disrupt the balance between proliferation and apoptosis and as such, may play an important role in the development of OSCC.

In addition, our results showed that GRIM-19 not only negatively regulated the growth of OSCC cells, but also suppressed OSCC cell migration and invasion. Cancer cells typically spread by secreting various molecules that degrade the extracellular matrix (ECM), by invading blood vessels and by migrating to distant organs (30). Matrix metalloproteinases (MMPs) are a major group of enzymes that regulate ECM composition during normal development and pathological responses (31). It has been suggested that there are strong correlations between high levels of MMPs and OSCC invasiveness (32). Although various MMPs contribute to cancer cell metastasis, the gelatinases MMP-2 and MMP-9 have been most intensively studied due to their constitutive activation in many tumors (33). In the present study, upregulation of GRIM-19 expression decreased MMP-2 and MMP-9 expression. These findings suggest that upregulation of GRIM-19 suppresses OSCC cell migration and invasion probably through inhibition of MMP-9 and MMP-2.

The altered expression of signal transducer and activator of transcription 3 (STAT3) has been shown to play a key role in carcinogenesis by promoting cell proliferation, differentiation and cell cycle progression, as well as inhibition of apoptosis (34, 35) and may act as a candidate for use as a biological marker and new target for drug development (34). In normal cells, cytokine-induced activation of STAT3 (via phosphorylation at Tyr705) is suppressed by feedback regulators. However, it is constitutively activated by aberrant upstream tyrosine kinase activities in a broad spectrum of human and murine tumors (36), including OSCC (37). Thus, development of pharmacologic inhibitors of STAT signaling has the potential in the treatment of human cancers. It has been demonstrated that upregulation of GRIM-19 expression could inhibit STAT3 activation in different cancer types (12-15) due to GRIM-19 binding to the STAT3 gene inhibiting its transcription. Little is known, however, in regards to the role of GRIM-19 in OSCC due to the lack of research. In the present study, we found that upregulation of GRIM-19 expression inhibited Stat3 expression in OSCC cells. This result may suggest that upregulation of GRIM-19 inhibits the STAT3 signaling pathway in OSCC.

In addition, aberrantly active STAT3 promotes tumor cell growth and survival via an incessant induction of pro-growth genes, such as cyclin D1, Bcl-2, VEGF and MMP-2 (13, 19-21), whose products promote tumor cell cycle progression, survival, angiogenesis and metastasis, as well as inhibit apoptosis. In the present study, we also investigated whether upregulation of GRIM-19 affects STAT3 target gene expression as GRIM-19 may bind to the STAT3 gene inhibiting its transcription (18). Our results showed that upregulation of GRIM-19 expression significantly suppressed the expression of VEGF, Bcl-2 and cyclin D1. These findings may imply that upregulation of GRIM-19 expression is a promising new strategy for the treatment of OSCC.

In conclusion, in the present study, our results showed that upregulation of GRIM-19 expression significantly suppressed tumor growth of OSCC in vitro and in vivo. Additionally, we showed that the function of GRIM-19 in OSCC cells is exerted through both STAT3-dependent and -independent pathways. These findings may imply that upregulation of GRIM-19 expression is a promising new potential therapeutic strategy for OSCC.

References