Klotho inhibits the capacity of cell migration and invasion in cervical cancer

BOOGI CHANG1*, JINSUN KIM1*, DONGJUN JEONG2*, YUJUN JEONG2, SEOB JEON3, SAM-IL JUNG1, YOUNG YANG1, KEUN IL KIM1, JONG-SEOK LIM1, CHANGJIN KIM2 and MYEONG-SOK LEE1

1Research Center for Women's Diseases and Department of Biological Sciences, Sookmyung Women's University, Seoul; 2Department of Pathology, College of Medicine, Soonchunhyang University; 3Department of Obstetrics and Gynecology, Soonchunhyang University Hospital, Cheonan, Republic of Korea

Received March 27, 2012; Accepted May 22, 2012

DOI: 10.3892/or.2012.1865

Abstract. Aberrant activation of the Wnt/\(\beta\)-catenin signaling pathway is common in human cervical cancers. However, the mechanisms of Wnt activation in cervical cancer remain largely unknown. In the present study, we demonstrate that Klotho, a Wnt antagonist, is downregulated in invasive human cervical tumors and in a cell line we analyzed. Our data demonstrated that in vivo Klotho expression was not observed in invasive cervical carcinoma. In vitro restoration of Klotho expression in SiHa cells resulted in a decreased cell motility and invasiveness through upregulation of E-cadherin, downregulation of N-cadherin and reduced expression of MMP7 and -9. Ectopic expression of Klotho also reduced the expression of the epithelial-to-mesenchymal transition (EMT) transcription factors Slug and Twist. Furthermore, Klotho causes a significant inhibition of the Wnt/\(\beta\)-catenin pathway in cervical cancer cells, as supported by the expression of Wnt/\(\beta\)-catenin transcriptional target genes such as c-Myc and cyclin D1. Consequently, our findings demonstrate for the first time that Klotho regulates tumor invasion through the EMT process and provide novel mechanistic insights into the role of Klotho in cervical cancer progression and contribute to treatment for metastatic cervical cancer patients.

Introduction

Cervical carcinoma is one of the most common cancers and the second-leading cause of cancer deaths in women worldwide (1). Substantial research has been performed to identify the causative agents for development of cervical cancer and now it is generally accepted that human papilloma virus (HPV) is the principal etiological agent of cervical cancer (2). Although the virus infecting these tumors can immortalize human cells, it does not result in transformation. Therefore, HPV infection is likely to be necessary, but insufficient for developing cervical cancers. It might mean there are factors epigenetic, genetic, cellular, and environmental that can influence carcinogenesis (3). Although the precise molecular mechanisms are still unclear, the most possible signaling pathways that is considered as the second hit in the multistep process of cervical carcinogenesis caused by HPV is the Wingless-type (Wnt)/\(\beta\)-catenin pathway (4,5).

The Wnt pathway is an important regulator in the control of several biological processes such as proliferation and differentiation in embryogenesis, regulation of the cell cycle, tissue homeostasis in adult tissue and tumor progression (6). Wnt ligands binding to its receptor complex comprised of Frizzled/low-density lipoprotein receptor-related protein (Fz/LRP) trigger a canonical pathway. In this pathway, \(\beta\)-catenin was stabilized by inhibition of its phosphorylation and subsequent proteosomal degradation. Stabilized \(\beta\)-catenin translocates to the nucleus and forms a complex with T-cell factor/lymphoid enhancer factor (TCF/LEF) to activate target genes (7). In contrast, Wnt inhibition caused by its antagonists leads to decreased accumulation of cytosolic and nuclear \(\beta\)-catenin with consequent downregulation of Wnt reactive genes.

Aberrant activation of the Wnt/\(\beta\)-catenin signaling pathway contributes to the progression of several major human cancers (6). Cytoplasmic and nuclear accumulation of \(\beta\)-catenin is the main hallmark of Wnt activation and is observed in most cervical cancer specimens (8). However, mutations of APC and \(\beta\)-catenin genes that are usually responsible for the deregulated Wnt/\(\beta\)-catenin pathway in other tumors are rare in human cervical cancer (8,9). It suggests that Wnt activation is the main regulator of \(\beta\)-catenin in cervical cancer. Supporting this hypothesis, promoter hypermethylation of characteristic Wnt

Correspondence to: Dr Myeong-Sok Lee, Department of Biological Sciences, Sookmyung Women's University, 53-12 Chungpa-Dong 2-ka, Yongsan-Ku, Seoul 140-742, Republic of Korea

E-mail: mslee@sookmyung.ac.kr

*Contributed equally

Abbreviations: HPV, human papilloma virus; Fz/LRP, Frizzled/low-density lipoprotein receptor-related protein; TCF/LEF, T-cell factor/lymphoid enhancer factor; IGF-1, insulin-like growth factor-1; FGF23, fibroblast growth factor 23; EMT, epithelial-to-mesenchymal transition; MMPs, matrix metalloproteinases; ABC, active form of \(\beta\)-catenin

Key words: Klotho, cervical cancer, Wnt/\(\beta\)-catenin pathway, metastasis, epithelial-to-mesenchymal transition
antagonists Dickkopf-3, secreted Frizzled related protein-1, -2, -4 and Klotho has been identified in cervical carcinoma (10,11).

Klotho was first identified as a potent suppressor of aging, so loss of Klotho can result in multiple aging-like phenotypes (12). Klotho is a 1012-amino acid single pass transmembrane protein, and its extracellular domain can be cleaved, shed into the serum, and it can act as a circulating hormone (13,14). The intracellular domain is short and no known functional domains exist. Besides of its principle β-glucosidase activity (12,15), Klotho is involved in multiple biological processes. It is now generally accepted that Klotho inhibits insulin and insulin-like growth factor (IGF-1) signaling and acts as a co-receptor for fibroblast growth factor 23 (FGF23) (16). Multiple lines of evidence proposed that the expression level of Klotho influences human breast, and lung cancers via intervention of IGF-1 and insulin pathway (17,18). However, there are not sufficient studies on the role of Klotho in cervical cancer progression.

In our previous study (19), we showed epigenetic silencing of Klotho in HPV16-positive cervical cancer cell lines (CasKi and SiHa) and human cervical carcinoma.

In the present study, we demonstrated that in vivo Klotho expression in cervical carcinoma tissues was decreased as invasiveness became acute compare to its normal counterparts. In vitro studies revealed that Klotho restoration causes a dramatic downregulation of the Wnt/β-catenin target gene expression and demonstrate that Klotho significantly inhibit tumor proliferation and invasion by reversal of EMT markers. Based on this, our study indicated that Klotho shows clinical importance in Wnt/β-catenin pathway activating HPV16-infected cervical cancer.

Materials and methods

Cell culture. The human cervical cancer cell line SiHa, was purchased from the American Type Culture Collection (Manassas, VA) and was grown in Dulbecco's modified Eagle's medium (WelGene, Seoul) supplemented with 10% fetal bovine serum, 100 µg/ml penicillin and 100 U/ml streptomycin. Culture was grown at 37°C in a 5% CO₂ atmosphere.

Patient specimens. All uterine cervical tissues were obtained from patients under protocols approved by the institutional review board of Soonchunhyang University (Cheonan, Korea). Tumor tissue (n=20) and adjacent matched normal tissue (n=20) were obtained from women diagnosed with invasive cervical cancer. Histological diagnosis, tumor stage and grade were followed by the Union for International Cancer Control (UICC) classification schemes.

Immunohistochemistry. The uterine cervical tissue was fixed in 10% neutral buffered formalin for 8-12 h in room temperature and the paraffin blocks was made with standard methods. For immunohistochemical staining of Klotho, the paraffin block sections (4 mm thick) were deparaffinised, rehydrated, placed in 0.01 mol/l citrate buffer (pH 6.0), and treated by microwave heating for 15 min. The sections were then preincubated with 0.3% H₂O₂ in methanol for 20 min at room temperature to quench endogenous peroxidase activity. Subsequently, the sections were immunostained with an UltraTech kit (ImmunoTech, Marseille, France) according to the manufacturer's instructions. The sections were pretreated with 1% bovine serum albumin in phosphate-buffered saline (PBS), and then incubated with anti-Klotho antibody (Sigma, MO, USA) by dilution 1:60 for 1 h at room temperature. Thereafter, the sections were incubated with biotinylated secondary antibody for 15 min, washed with PBS, and treated with peroxidase-conjugated streptavidin for 20 min. Finally the sections were incubated in 3,3-diaminobenzidine tetrahydrochloride with 0.05% H₂O₂ for 5 min and then counterstained with haematoxylin. Sections of kidney formalin-fixed paraffin-embedded tissue that had been confirmed to overexpress this protein was used as positive control. The PBS was applied instead of the primary antibody to negative controls.

Reverse transcription-PCR. Total RNA was isolated from vector- or Klotho-transfected SiHa using the Qiagen RNeasy kit (Qiagen) and then reverse transcribed with ImProm-II™ Reverse Transcription System (Promega), according to the manufacturer's instructions. The cDNA was amplified by PCR using the AccuPower PCR premix (Bioneer, South Korea) with the following primers: Klotho-specific primers were: forward, 5’-ACTTCGCCAGTCAGTGGCCGTA-3’ and reverse, 5’-TGGGCCCAGGAAACATTTGCTGTC-3’; C-myc primers: forward, 5’-ACCAGCAGCGACTCTGAGGAGG AAC-4’ and reverse, 5’-TGGACCTTTGCGACGAGGATAG C-3’; cyclin D1 primers: forward, 5’-ACCTCTTCGTTGCC TCTGTTCCACAAGT-3’ and reverse, 5’-AGGCCCGGAGG AGTCCGGGT-3’; E-cadherin primers: forward, 5’-TCCA TCAAGCTGCCCAGAAA-3’ and reverse, 5’-TGACTCTCTGT GTCTCTGTGTA-3’; N-cadherin primers: forward, 5’-CAGT CTCAGGGACCCAGAT-3’ and reverse, 5’-TAAGCGCAG TGATGCTCC-3’; MMP7 primers: forward, 5’-CGGATGTGG AGCAAGTCTAGGGATAC-3’ and reverse, 5’-GAGATGT GAGAAGCTGTCTATCATTATC-3’; MMP9 primers: forward, 5’-CTTCTCTGGGCGCGGAT-3’ and reverse, 5’-AGCCTTCTCTCGTCTGAGAGAC-3’. Human ACTB forward, 5’-CTTCTGGGCGCGGAT-3’ and reverse, 5’-TATGGTCTCC-3’ was modified as an endogenous control.

Modification of Klotho expression. The secreted form of human Klotho (sKLO) cDNA cloned into pcDNA3.1/V5-His expression vector (Invitrogen) was a generous gift from Michael J. Econs (Indiana University School of Medicine, Indianapolis, IN, USA). SiHa cells were plated at 1×10⁵ cells/60-mm dishes 24 h prior to transfection and were transfected with 3 µg of either sKLO expression vector or an empty vector control for 5 h in serum-free medium using Lipofectamine 2000 (Invitrogen) following the manufacturer's instructions. After replacing the DNA-Lipofectamine complex-containing medium with complete growth medium, transfected cells were incubated for 72 h. After modification of sKLO, the altered expression of sKLO and Wnt/β-catenin signal-related genes was also examined by RT-PCR and immunoblotting.

Immunoblotting. Cells transfected or non-transfected with sKLO plasmid were harvested and extracts formed by the addition of lysis buffer. After boiling with 2X sample buffer, proteins were resolved on 10% SDS-polyacrylamide gels and

1023
It has been reported that the decreased expression of Klotho was
expressed in cervical cancer when compared with the normal tissue. It
was correlated well with our previous epigenetic silencing study.
Figure 1C). Our immunohistochemistry results clearly demonstrate a
significant decrease in Klotho protein expression and correlated well
with our previous epigenetic silencing of Klotho mRNA as shown by
RT-PCR in higher grade of cervical cancer. Our previous study
firstly reported that Klotho expression was downregulated in cervical
cancer by epigenetic silencing on promoter region (19). According to
our previous epigenetic study, Klotho mRNA in human cervical
cancer cell lines did not or were slightly expressed, especially in
those having higher metastatic potential (CasKi and SiHa).
In addition, the Klotho mRNA level in human cervical cancer
tissues was also downregulated compared to its normal tissues.
From this study, we hypothesized that the level of Klotho expression
may be in inverse proportion to invasiveness of cervical cancer.
To examine the Klotho expression level and cervical cancer
invasiveness, we first examined Klotho expression in a
human cervical cancer with different grades by immunohistochemistry.
In the uterine cervical normal stratified squamous epithelium, strong
Klotho expression was observed in the cytoplasm (Fig. 1A). All normal
cervical samples were obtained from women undergoing surgery expressing high
Klotho levels. Klotho expression in cervical intraepithelial neoplasia III (CIN III), which is cancer but has not yet
invaded deeper tissues, was decreased about half compared to normal counterparts (Fig. 1B). In contrast, there was no
Klotho expression detected in invasive cervical cancer tissues
(Fig. 1C). Our immunohistochemistry results clearly demonstrate a
significant decrease in Klotho protein expression and correlated well with our previous epigenetic silencing of
Klotho mRNA as shown by RT-PCR in higher grade of cervical cancer when compared with the normal tissue. It
suggests that Klotho downregulation is closely related in
cervical invasiveness.

Reversal of epithelial-to-mesenchymal transition by Klotho expression in SiHa cervical cancer cells. The immunohistochemistry data indicated that downregulated Klotho expression
might be one of the important factors to increase cervical cancer invasiveness. In addition, our previous study (19)
showed that ectopic expression of Klotho with CasKi cells
were more compact and adherent to adjacent cells than
vector-transfected ones, indicating that Klotho can influence the EMT of cervical cancer cells. Tumor invasion
into surrounding tissues requires epithelial cells to lose
their polarity and intercellular adhesion (21). E-cadherin
is the prime mediator of intercellular adhesion (22) and its

Results

Expression of Klotho in human cervical carcinoma. It has
been reported that the decreased expression of Klotho was
related to carcinogenesis in breast cancer cells (20), but not
in cervical cancer. Our previous study firstly reported that
Klotho expression was downregulated in cervical cancer by
epigenetic silencing on promoter region (19). According to our
previous epigenetic study, Klotho mRNA in human cervical
expression may be in inverse proportion to invasiveness of
cervical cancer.

Wound healing migration. Alteration of cell migration induced
by overexpressed sKL was estimated by means of wound-
healing migration to measure alteration of two-dimensional
movements. pcDNA3.1/HA vector and sKL-transfected
SiHa cells were cultured to confluence in 60-mm² dishes. A
scratch was made on the monolayer using a sterile pipette tip.
At the initiation of the experiment, a microscopic image of
the scratch wound was taken at x50 magnification. At 36 h,
the same region was imaged. The width of the scratch wounds
was measured in Photoshop 7.0. The relative fold change of the
scratch wound width at 36 h after introduction of the scratch
compared to the control which control the fold change was
calculated as the average of 6 fields.

Matrigel invasion assay and extracellular matrix transition. To
examine invasiveness, 2.5x10⁴ of vector- or sKL-transfected
SiHa cells per well in serum-free DMEM were placed in
the upper chamber. DMEM plus 10% FBS was placed in
the lower chamber as a chemoattractant. Cells were allowed
to migrate through a uncoated membrane for 24 h at 37°C.
Matrigel invasion assay was measured in Photoshop 7.0. The relative fold change of the
scratch wound was taken at x50 magnification. At 36 h,
the amount of migrating cells was determined by
measured fluorescence at 494/517 nm (Abs/Em).

electrotransferred to PVDF membranes (Millipore). Modified
sKL expression level and influenced proteins was examined
using the antibodies: Polyclonal anti-sKL (T-19, Santa Cruz
Biotechnology), cyclin D1 (M-20, Santa Cruz Biotechnology),
total β-catenin (6B3, Cell Signaling), active β-catenin (no. 9582,
Cell Signaling), GSK3β (no. 2199, Epitomics), phospho-GSK3β
(no. 2435, Epitomics), E-cadherin (610181, BD Biosciences),
N-cadherin (610920, BD), MMP7 (J-22, Santa Cruz
Biotechnology), and MMP9 (no. 3852, Cell Signaling). As a
loading control, blots were probed with γ-tubulin (sc7396, Santa
Cruz Biotechnology). Immunoreactivity of each protein was
visualized using chemiluminescence and recorded on X-ray
film.

Figure 1. Alteration of Klotho expression in human cervical carcinoma. Immunohistochemical staining of Klotho in human cervical carcinoma with different
stages. (A) Strong expression of Klotho in uterine cervical normal stratified squamous epithelium. (B) Mild expression of Klotho in cervical intraepithelial
neoplasia stage III. (C) Loss of Klotho expression in invasive squamous cervical carcinoma.
downregulation is a hallmark of tumor invasion (23). Fig. 2B shows that ectopic expression of Klotho in SiHa cells results in a dramatic increase in the protein levels of E-cadherin and a decrease in N-cadherin. This result suggests that Klotho expression causes a reversal of EMT in cervical cancer cells.

Association with downregulating Slug/Twist expression in EMT modulation by Klotho. Compared to vector control, RT-PCR analysis also shows that Klotho expression in SiHa cells causes upregulation of E-cadherin, and leads to downregulation of N-cadherin (Fig. 2A). It suggests that the effect of Klotho on the alteration of EMT in SiHa cells may be associated with transcriptional regulation.

Most representative transcription factors involving in EMT regulation are Slug, Snail and Twist which are repressors for E-cadherin gene transcription (24). Furthermore, Wnt/β-catenin signaling has been reported to cause upregulation of the expression of Slug and Twist (25,26) and Klotho can influence its expression acting as Wnt antagonist (19). Fig. 2C demonstrates that the protein levels of Slug and Twist are decreased by Klotho expression. It means that the Klotho-induced reversal of EMT in SiHa cells is associated with downregulation of transcriptional factor Slug/Twist and resultant upregulation of E-cadherin.

Suppression of cellular motility, invasive capacity via downregulation of MMP7 and -9 by Klotho expression. To examine the effect of Klotho on EMT reversal, we studied the effect of Klotho expression on migration of SiHa cells using a wound healing assay. Fig. 3A shows that Klotho-transfected SiHa cells exhibited slower migration into the wounded area comparing with vector-transfected ones.
We also examined the in vitro invasiveness of SiHa cells overexpressing Klotho, or vector transfected cells in a Matrigel invasion assay. Cell motility was measured by average fluorescence of cells migrating through a control, uncoated insert. Klotho-transfected cells exhibited a significant decrease in invasive capacity compared with control cells (Fig. 3B). These data suggest that EMT reversal caused by Klotho expression contributes to the invasiveness of cervical cancer cells.

Matrix metalloproteinases (MMPs) play an important role in cell-matrix interaction and tumor invasion. We therefore studied the effect of Klotho on MMPs expression. Fig. 3C shows that ectopic expression of Klotho in SiHa cells resulted in decreased level of MMP7 and -9. In addition, transcripts of MMP7 and -9 also are decreased in Klotho-transfected SiHa cells similar to the modulation of protein expression levels. It has been reported that MMP activities are correlated with protein expression level of each MMP (27,28). Based on this, Klotho-induced downregulation of MMPs suggests that its activity is also decreased. Altogether, ectopic expression of Klotho suppresses the invasiveness of cervical cancer cells via EMT reversal and downregulation of MMP expression.

Inhibition of canonical Wnt/β-catenin pathway by Klotho.

Our data indicates that loss of Klotho expression can relate to increased invasiveness through alteration of EMT, cell motility, and MMPs activities. It has been reported that Wnt pathway is involved in cell proliferation, invasion and metastasis through regulation of Wnt target gene expression (29). Altered gene and cellular characteristics by Klotho expression during enhancement of cervical cancer was observed mostly in the Wnt pathway. In addition, we previously found Klotho is Wnt antagonist, so we analyzed the expression of Klotho, GSK3β, β-catenin and specific Wnt/β-catenin direct transcriptional target genes with representative roles in tumor progression and invasion. Fig. 4 shows that ectopic expression of Klotho in SiHa cells caused a decreased expression of phospho-GSK3β at serine-9 without changing the levels of its total protein. In addition, alteration of GSK3β reduced the active form of β-catenin (ABC), which is dephosphorylated on S37 or T41 residues.

c-Myc seems to be essential for sustaining proliferation of human tumor cells (30). Importantly, Klotho overexpression resulted in a marked downregulation of c-Myc mRNA being a direct transcriptional Wnt/β-catenin target (Fig. 4A). The expression of cyclin D1, another direct transcriptional Wnt/β-catenin target with major roles in cell proliferation (31,32) was also markedly downregulated in Klotho-transfected SiHa cells (Fig. 4). Together, these results indicate that Klotho expression inhibits human cervical cancer invasion by having a major regulatory role on the expression of specific β-catenin direct transcriptional targets.

Discussion

It has been reported that the first etiology of cervical cancer is HPV infection and it potentially activates Wnt/β-catenin signaling pathway to promote tumorigenesis. Klotho is known as a Wnt antagonist and it is downregulated mainly by promoter hypermethylation in several human tumors, including lung, breast, pancreatic, colon and cervical cancer (19,33-35). Although it has been reported that Klotho acts as tumor suppressor and inhibits cancer cell proliferation in many cancers (36), little is known about its potential effect on metastatic cervical tumor and the process of this tumor metastasis. We reported here that Klotho expression resulted in a decreased capacity of cell migration and invasion. This was confirmed by immunohistochemistry data using human cervical cancer tissues. Normal cervical tissues have very strong Klotho expression and it was decreased to about half in CIN III grade. In contrast, no or very low level of Klotho was observed in invasive cervical cancer tissues. This suggests that the loss of Klotho in cervical cancer may contribute to its metastatic potential. Based on our study, the action mechanism of Klotho is associated with a reversal of the EMT process via downregulation of E-cadherin expression, upregulation of N-cadherin expression and decreased activity of MMP7 and -9.

EMT is characterized by increased migratory features, decreased epithelial cell adhesion, loss of cytoskeleton components and acquisition of mesenchymal components (37). A hallmark of EMT is the loss of E-cadherin expression (37). Our study showed that overexpression of Klotho in SiHa cells changed EMT by both increase of E-cadherin and decrease of N-cadherin. The increase of E-cadherin with ectopic expression of Klotho was associated with downregulation of the transcriptional repressors Slug and Twist. In a recent study Doi et al (38) demonstrated that in renal fibrosis and metastatic cells restoring the expression of Klotho leads to inhibition of TGF-β1-induced EMT. It means that Wnt/β-catenin pathway may also participate in regulation of the EMT process in cancer progression and that Klotho may interfere with it.

Downregulation of E-cadherin leads to the loss of intercellular adhesion (23). SiHa cells transfected with Klotho showed a marked decrease in the expression of active β-catenin, c-Myc and cyclin D1. These data suggest that Klotho blocks Wnt/β-catenin pathway and consequently inhibits cervical cancer cell proliferation. In addition, it can alter the invasive behavior of cervical cancer cells. According to our wound healing assay,
Klotho-transfected SiHa cells which have increased E-cadherin moved slower into wound lesions. E-cadherin binds directly to β-catenin (22) and this binding is prerequisite for formation of cell-cell adhesion, which prevents tumor invasion. Concurring with this, E-cadherin expression correlates negatively with progression of cervical intraepithelial neoplasia (39). Overall, it strongly support the hypothesis that Klotho blocks human cervical cancer progression, and its re-expression has the possibility to change patient’s prognosis. Taken together, Klotho is a potent invasion suppressor as strong as tumor suppressor.

Based on our results, the effect of Klotho can be a result of synergistic convergence of multiple regulatory pathways, including induction of apoptosis, decrease in proliferation, and angiogenesis, due to the Wnt/β-catenin signaling pathway being immensely influential. Therefore, our further studies in progress will determine which Klotho could cause concomitant suppression of tumor progression. However, it still remains unknown that the inhibitory mechanism of Klotho in Wnt/β-catenin signaling especially in cervical cancer. It has been reported that Klotho can interact with Wnt ligands such as Wnt5a, and Wnt3 to suppress metastasis in melanoma or aging (36,40). Therefore, our future study will be focused on the processes of Wnt/β-catenin pathway by Klotho.

In conclusion, we report for the first time that loss of Klotho leads to aberrant activation of Wnt/β-catenin signaling in human cervical cancer. It was also shown that re-expression of Klotho causes a remarkable inhibition of the Wnt/β-catenin pathway blocking tumor invasion. Thus, our findings revealed more information on the unknown and novel invasion-suppressing signaling mechanisms of Klotho, and also emphasize the potential therapeutic value of Klotho in human cervical cancer treatment.

Acknowledgements

This study was supported by a grant funded by SooMyung Women’s University (2011).

References