Cystatins in non-small cell lung cancer: Tissue levels, localization and relation to prognosis

BERND WERLE1,2, ULRIKE SCHANZENBÄCHER1, TAMARA TURENSEK LAH5, EILEEN EBERT1, BRITTA JÜLKE1, WERNER EBER1, WERNER FIEHN2, KLAUS KAYSER4, EBERHARD SPIESS3, MAGNUS ABRAHAMSON7 and JANKO KOS6

1Abteilung für Klinische Chemie und Bakteriologie, Thoraxklinik Heidelberg gGmbH, Amalienstr. 5, D-69117 Heidelberg; 2Zentrallabor des Klinikums, Medizinische Klinik und Poliklinik, Universität Heidelberg, Bergheimerstr. 8, D-69115 Heidelberg; 3AG Modellversuche zur Invasion und Metastasierung, Deutsches Krebsforschungszentrum, INF 280, D-69120 Heidelberg; 4Institute of Pathology, Charite, Berlin, Germany; 5Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Vecna pot 111, SLO-1000 Ljubljana; 6Faculty of Pharmacy, Department of Pharmaceutical Biology, University of Ljubljana, Askerceva 7, 1000 Ljubljana, Slovenia; 7Department of Clinical Chemistry, University of Lund, University Hospital, S-221 85 Lund, Sweden

Received February 9, 2006; Accepted April 17, 2006

Abstract. Cystatins regulate tumour-associated cysteine proteases, however, their role in tumour progression is not clear yet. To assess their relevance in the progression of non-small cell lung cancer (NSCLC) the protein level, cysteine protease activity (CPI) and localization of type I (stefins A and B) and type II (C, E/M and F) cystatins were defined in tumours and control lung counterparts from 165 patients. The medians of CPI activity, stefins A and B were significantly greater in tumour than in lung tissue (2.1-fold, 1.7-fold, 1.2-fold, respectively, all p<0.001). The median levels of cystatin C and cystatin E/M were lower in tumour tissue (0.9-fold, p=0.06; 0.6-fold, p<0.01). In all the samples the levels of cystatin F were below the detection limit. Immuno-histochemical analysis revealed the presence of all cystatins in tumour cells and infiltrated inflammatory cells such as macrophages and neutrophils. In univariate survival analysis patients with high levels of stefin A, stefin B and CPI activity exhibited a better survival probability (p=0.05, p=0.05, p<0.01, respectively). In contrast, cystatins C and E/M provided no prognostic information. In multivariate analysis the most powerful predictor of survival was the pTNM stage (p<0.0001; RR 3.5), followed by stefin A, stefin B and CPI activity (all p=0.03; RR 1.5). Our results suggest that only stefins A and B, i.e. type I cystatins, are up-regulated in lung tumours and thus able to counteract harmful tumour-associated proteolytic activity. As biological markers they may add independent prognostic information for better assessment of low- and high-risk patients with NSCLC.

Introduction

Cystatins, the cysteine protease-inhibitors, comprise a superfamily of evolutionarily related proteins, each consisting of at least one domain of 100-120 amino acid residues with conserved sequence motifs (1). Type I cystatins, stefins A and B, are cytosolic, ~100 amino acid residue proteins with no disulphide bridges. Type II cystatins, C, D, E/M, F, S, SA and SN are extracellular proteins, consisting of ~120 amino acid residues and containing two disulphide bridges. Type III cystatins, the kininogens, are large multifunctional plasma proteins, containing three type II cystatin-like domains.

A broad spectrum of biological roles have been suggested for cystatins, including protein catabolism, regulation of hormone processing and bone resorption, inflammation, antigen presentation and T-cell-dependent immune response (2,3) as well as resistance to various bacterial and viral infections. In most cases cystatins function as reversible, tight-binding inhibitors of cysteine proteases, however, they can also act in a manner independent of their inhibitory properties (4-7). Cystatins have been suggested to be involved in the alteration of the proteolytic system in several diseases, including cancer (2,8). Mutations in the gene encoding stefin B have been linked to progressive myoclonus epilepsy (EPM1) (9) and, in the gene for cystatin C, with hereditary cystatin C amyloid angiopathy (10).

In lung tumours the protein concentration and enzymatic activity of cysteine proteases, in particular cathepsins B and L have been shown to be significantly higher than in their control lung counterparts (11-17). These increased levels were not balanced with a corresponding increase of the cystatins.

Key words: stefin, cystatin, cysteine protease, cathepsin, non-small cell lung cancer, prognosis
Total CPI activity in tumours has been reported to be increased (18), unchanged (19) and lower (20,21) with respect to matched control tissue. For individual cystatins we found increased protein levels for stefins A and B, but decreased levels for cystatin C (22). For the latter we suggested that its inhibitory capability is hindered during cancer progression since the cathepsin B/cystatin C complex was significantly less abundant in the sera of patients bearing malignant lung tumours than in those with non-cancerous lung diseases (23). Survival analysis on a limited number of patients showed a correlation of high CPI activity and stefin B levels with lower risk of death in NSCLC patients (22).

To further our understanding of the role of individual cystatins in lung tumours, we examined five cystatins, stefins A and B, and cystatins C, E/M and F, in a cohort of 165 patients with NSCLC. Cystatin protein levels were measured in matched pairs of tumour and adjacent lung parenchyma, and their cellular localization was determined on selected tissue sections. To evaluate their prognostic relevance, the protein levels of cystatins were correlated with histological and clinical parameters of advanced disease in the group of NSCLC patients after a seven-year observation period.

Patients and methods

Patients. Tumour and non-cancerous lung tissues were obtained as matched pairs from each of the 165 patients with lung tumours, resected by surgery at the Thoraxhospital, Heidelberg, gGmbH. The age of the patients ranged from 15 to 81 years (median: 59 years). Whenever macroscopically possible, tumour tissue was resected in the periphery of the tumour. The necrotic parts of the tumour were removed. Non-cancerous adjacent lung tissue was taken from areas at least 6 cm away from the tumour. Tissue homogenates were prepared as described elsewhere (15).

Based on the predominant cell type, lung tumours were grouped according to the WHO classification. The tumour disease stage (pTNM) was classified according to the international staging system (UICC 1987). All patients included in this study had been subjected to primary surgery. Twenty patients with pTNM IIb and 13 patients with pTNM IV, underwent curative surgery presumably due to incorrect pre-operative clinical staging (cTNM) or to individually favourable conditions. None of the patients received chemotherapy or was exposed to radiation therapy prior to surgery. After surgery, only low-stage patients were observed, while high-stage patients received adjuvant or palliative chemotherapy according to current therapy guidelines (24,25). The median follow-up of patients still alive at the time of analysis was 46 (9-89) months. This study was carried out with local ethics committee approval.

Immunohistochemical analysis. To visualize the cystatins in tissue sections, a highly sensitive staining protocol was applied, using the following primary antibodies: mouse C5/2 MAb, A6/2 MAb and 1A2 MAb for stefin A, stefin B and cystatin C, respectively (Krka, d.d., Slovenia), and rabbit PAb against cystatin E/M and cystatin F (M.A., Lund University, Sweden). Sections (3-5 μm) from formalin-fixed, paraffin-embedded tumour tissues were used for immunohistochemical analysis (26). Lung tumour tissue sections were deparaffinized by xylene (2x5 min) and rehydrated through alcohol 99% (2x5 min), 96% (1x2 min), 70% (1x2 min), 50% (1x2 min) to phosphate buffered saline (PBS), pH 7.4 (3x3 min). After blocking of endogenous peroxidase with 2% methanolic hydrogen peroxide for 15 min and non-specific binding with 5% normal goat serum in PBS for 30 min at room temperature, tissue sections were rinsed in PBS (3x3 min) and incubated with an appropriate dilution of anti-cystatin antibody in PBS, containing 5% normal goat serum, in a humid chamber at room temperature overnight. After washing with PBS (3x3 min), tissue sections were incubated with biotinylated secondary antibody (Vector Laboratories, Serva Heidelberg, Germany) in PBS with 5% normal goat serum for 30 min and then with the Vectastain ABC Reagent (Vector) for another 30 min. Peroxidase activity was developed with 3,3'-diaminobenzidine tetrahydrochloride (0.3 mg/ml in 0.05 M Tris-buffer, pH 7.5), including 0.2% hydrogen peroxide for 10-15 min. Finally, tissue sections were lightly counterstained with 5% Harris' haematoxylin, dehydrated, and mounted.

The following control assays were performed: i) incubation as in the assay, omitting the primary antibody, ii) incubation omitting the secondary antibody, iii) pre-absorption of the antigen (stefins A, B, cystatin C) with the antibody in 1:3 molar ratio prior the assay. Tissue sections were inspected by the pathologist (K. K.).

Determination of protein concentration. Protein concentration was determined according to Bradford (27). Bovine serum albumin was used as a standard.

Determination of CPI activity. CPI activity was determined according to Ebert et al (28). Two hundred and fifty micro-liters of 200 mM phosphate buffer containing 4 mM EDTA and freshly prepared DTT (final concentration 4 mM), and 100 μl of 8 nM papain (final concentration) were incubated together with 100 μl of the inhibitor for 10 min at 40°C. Then 20 mM of phosphate buffer was added to a final volume of 975 μl. After 5 min incubation at 25°C, 25 μl Z-Phe-Arg-aminomethyl-coumarine (AMC) was added (5 μM final concentration). Fluorescence was measured at 460 nm in an LS-3B Fluorescence Spectrometer (Perkin-Elmer), with excitation at 370 nm. The amount of liberated AMC and consequently the papain activity was calculated using a standard curve. One inhibitory unit (IU) was defined as the amount of inhibitor which inactivated 1 mol of papain (EU). Specific activity was expressed in IU per mg protein (IU/mg protein).

ELISAs. Stefins A and B were quantitated by using commercially available assays (Krka). The monoclonal antibodies used in the assays recognized native and recombinant antigens equally well. Monoclonal antibodies C5/2 MAb to stefin A and E7/1 MAb to stefin B bound both the complex and free inhibitors, whereas A2/2 MAb to stefin A and A6/2 MAb to stefin B preferentially bound free inhibitors (29). In both assays cytosol in a 1:50 dilution were added to the wells of a microtiter plate, pre-coated with the capture antibody (C5/2 MAb for stefin A, A6/2 MAb for stefin B). After 2 h incubation at 37°C, the wells were
washed and filled with secondary antibody conjugated to HRP (2A2 MAb for stefin A, E7/1 for stefin B). After a further 2 h incubation at 37˚C, peroxidase substrate 3,3,5,5-tetramethyl benzidine (Sigma, St. Louis, USA) in the presence of hydrogen peroxide was added. The amount of degraded substrate was visualized by absorbance at 450 nm, and the concentration of stefin were calculated from the calibration curve. The detection limit of the assay was 0.8 ng/ml for stefin A and 0.6 ng/ml for stefin B.

Cystatins C, E/M, and F were quantitated according to the procedures developed by Olafsson et al (30) and Ni et al (31,32). A polyclonal rabbit antiserum raised against individual recombinant human cystatin recognized free inhibitor and enzyme-inhibitor complexes. The specificity of the antiserum was tested by immunoelectrophoresis of concentrated proteinuria urine containing stefins A and B and cystatins C, S, SN, kinogen, and added recombinant cystatins C, D, and F. The IgG fraction from the antiserum was isolated and used in a double sandwich ELISA. Wells in polystyrene microtiter plates (MaxiSorp, Nunc, Copenhagen, Denmark) were coated with the IgG fraction. Samples or recombinant cystatins as calibrators, were added to the wells. After 2 h incubation at 37˚C the wells were washed and filled with biotinylated IgG fraction. Bound cystatin was quantified using a streptavidin-HRP conjugate (Amersham Pharmacia Biotech) using 2,2-azino-di-(3-ethyl-benzothiazolin-sulfonate and hydrogen peroxide as substrate (Sigma, Munich, Germany). The absorbance was read at 405 nm in a Titerok Multiscan spectrophotometer.

The detection limit for cystatin C was 0.5 ng/ml, for cystatin E/M 5 pg/ml and for cystatin F 10 pg/ml.

Statistical analyses. To compare paired data of tumour and non-cancerous lung tissue, two-tailed Wilcoxon’s rank test was used. Differences in cystatin content and CPI activity between different subgroups of patients were tested by the Mann-Whitney and Kruskall-Wallis tests. Correlations between CPI activity and cystatin protein concentrations were calculated by non-parametric regression analysis and the significance of the Spearman rank correlation coefficient was evaluated by analysis of variance (ANOVA).

Univariate analysis of survival probability was performed by Kaplan-Meier analysis (33), using log-rank test to determine statistical significance between the survival curves. Multi-variate analysis was performed using the Cox proportional hazard model (34) and a stepwise forward logistic regression approach. The discrimination levels to differentiate between the subgroups of patients were calculated by the Critlevel program (35). Several statistical packages (PC-Statistik by TOPSOFT, Hannover, Germany; Statistika by Statsoft, Hamburg, Germany, and SPSS by SPSS Inc., Chicago, IL) were applied.

Results

CPI activity and protein levels of stefins and cystatins in lung tumours and parenchyma. The medians of CPI activity and non-cancerous lung tissue, two-tailed Wilcoxon’s rank test was used. Differences in cystatin content and CPI activity between different subgroups of patients were tested by the Mann-Whitney and Kruskall-Wallis tests. Correlations between CPI activity and cystatin protein concentrations were calculated by non-parametric regression analysis and the significance of the Spearman rank correlation coefficient was evaluated by analysis of variance (ANOVA).

Univariate analysis of survival probability was performed by Kaplan-Meier analysis (33), using log-rank test to determine statistical significance between the survival curves. Multi-variate analysis was performed using the Cox proportional hazard model (34) and a stepwise forward logistic regression approach. The discrimination levels to differentiate between the subgroups of patients were calculated by the Critlevel program (35). Several statistical packages (PC-Statistik by TOPSOFT, Hannover, Germany; Statistika by Statsoft, Hamburg, Germany, and SPSS by SPSS Inc., Chicago, IL) were applied.

Results

CPI activity and protein levels of stefins and cystatins in lung tumours and parenchyma. The medians of CPI activity and non-cancerous lung tissue, two-tailed Wilcoxon’s rank test was used. Differences in cystatin content and CPI activity between different subgroups of patients were tested by the Mann-Whitney and Kruskall-Wallis tests. Correlations between CPI activity and cystatin protein concentrations were calculated by non-parametric regression analysis and the significance of the Spearman rank correlation coefficient was evaluated by analysis of variance (ANOVA).

Univariate analysis of survival probability was performed by Kaplan-Meier analysis (33), using log-rank test to determine statistical significance between the survival curves. Multi-variate analysis was performed using the Cox proportional hazard model (34) and a stepwise forward logistic regression approach. The discrimination levels to differentiate between the subgroups of patients were calculated by the Critlevel program (35). Several statistical packages (PC-Statistik by TOPSOFT, Hannover, Germany; Statistika by Statsoft, Hamburg, Germany, and SPSS by SPSS Inc., Chicago, IL) were applied.

Results
The median levels of CPI activity, and stefins A and stefin B were significantly higher in tumour tissue than in the corresponding lung parenchyma (2.1-fold, 1.7-fold and 1.2-fold, respectively, p<0.001). In contrast, the median levels of cystatin C and cystatin E/M were lower in tumour tissue than in the corresponding lung parenchyma (p=0.06; p<0.01, respectively). Only stefin A levels were significantly higher in primary tumours than in secondary lung tumours (p<0.01). In tumour tissue, the level of stefin B was higher than that of stefin A (p<0.01), cystatin C (p<0.01) and cystatin E/M (p<0.01). Regarding the histological cell type, CPI activity and stefin A concentration were significantly higher in SCC than in AC (all p<0.01). Remarkably, carcinoids, low grade neoplasms, exhibited low stefin A and high cystatin C values. There were no significant differences in CPI activity and the concentrations of stefins A and B, and cystatins C, and E/M as a function of pTNM-stage. Regarding cell differentiation, only stefin A concentration was higher in poorly differentiated tumours (G3) than in well and moderately differentiated cells (G1/G2), (112 vs 68 ngmg⁻¹ protein, p<0.01).

Correlations between cystatin levels and CPI activity. In NSCLC, the levels of stefins A and B correlated with CPI activity (p<0.01, r=0.4; p<0.05, r=0.3). There was no correlation between cystatins C, E/M and stefins A and B or between cystatins C, E/M and CPI activity. In lung tissue no correlation between cystatins was observed.

Stefin A levels were validated in 43 matched pairs of tumour and adjacent lung parenchyma by using another commercially available ELISA (BioAss, Diessen, Germany). A good correlation was obtained between stefin A values measured by ELISAs from Krka and from BioAss (P<0.01, r=0.73, n=86).

Cellular distribution of cystatins in tumours. Tumours with high protein levels of a particular cystatin were selected for immunohistochemical analysis. Immunohistochemical staining of cystatins in lung tumours of different origin is shown in Fig. 1.

Table II. Cysteine protease-inhibitory activity (CPI), cystatin C and cystatin E/M in tissue homogenates of tumours and normal lung parenchyma of patients with NSCLC.

<table>
<thead>
<tr>
<th></th>
<th>CPI activity (μIUmg⁻¹ protein⁻¹)</th>
<th>Cystatin C (ngmg⁻¹ protein⁻¹)</th>
<th>Cystatin E/M (pgmg⁻¹ protein⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n Tumour median (5%, 95%) Normal median (5%, 95%) Tu/Lu ratio</td>
<td>n Tumour median (5%, 95%) Normal median (5%, 95%) Tu/Lu ratio</td>
<td>n Tumour median (5%, 95%) Normal median (5%, 95%) Tu/Lu ratio</td>
</tr>
<tr>
<td>Lung tumours</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(total)</td>
<td>97 936 445 2.1 101 3.8 4.1 0.9</td>
<td>48 13.9 22.6 0.62</td>
<td></td>
</tr>
<tr>
<td>Primary tumours</td>
<td>79 1029 455 2.3 82 3.7 4.1 0.9</td>
<td>38 14.6 22.2 0.66</td>
<td></td>
</tr>
<tr>
<td>(NSCLC)</td>
<td>(341, 4248) (168, 1408) (0.7, 45) (1.7, 13.4)</td>
<td>(3.5, 69.1)</td>
<td></td>
</tr>
<tr>
<td>Squamous cell</td>
<td>40 1271 427 3 41 3.3 4.1 0.8</td>
<td>21 12.7 21.7 0.58</td>
<td></td>
</tr>
<tr>
<td>carcinoma</td>
<td>(474, 4982) (111, 1081) (0.7, 13)</td>
<td>(3.5, 34.5)</td>
<td></td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td>26 764 454 1.7 28 4.5 4.9 0.9</td>
<td>11 17.5 23.3 0.75</td>
<td></td>
</tr>
<tr>
<td>(total)</td>
<td>(249, 2135) (193, 1775) (1.3, 48.6)</td>
<td>(9.5, 69.1)</td>
<td></td>
</tr>
<tr>
<td>Large cell carcinoma</td>
<td>6 964 570 1.7 6 2.6 3.6 0.7</td>
<td>3 8.9 22.9 0.39</td>
<td></td>
</tr>
<tr>
<td>(total)</td>
<td>(560, 1632) (300, 1617) (0.4, 8.4)</td>
<td>(7.3, 28)</td>
<td></td>
</tr>
<tr>
<td>Carcinoids</td>
<td>5 594 334 1.8 5 45.1 3.3 1.2</td>
<td>3 27.9 22.2 1.26</td>
<td></td>
</tr>
<tr>
<td>(total)</td>
<td>(342, 2418) (167, 461) (1.6, 167)</td>
<td>(17.9, 59.1)</td>
<td></td>
</tr>
<tr>
<td>Secondary tumours</td>
<td>20 780 429 1.8 21 4.4 4.7 0.9</td>
<td>10 11.6 32.1 0.36</td>
<td></td>
</tr>
<tr>
<td>(total)</td>
<td>(303, 2698) (239, 1600) (0.8, 30)</td>
<td>(1.7, 26.9)</td>
<td></td>
</tr>
</tbody>
</table>

The median levels of CPI activity, and stefins A and stefin B were significantly higher in tumour tissue than in the corresponding lung parenchyma (2.1-fold, 1.7-fold and 1.2-fold, respectively, p<0.001). In contrast, the median levels of cystatin C and cystatin E/M were lower in tumour tissue than in the corresponding lung parenchyma (p=0.06; p<0.01, respectively). Only stefin A levels were significantly higher in primary tumours than in secondary lung tumours (p<0.01). In tumour tissue, the level of stefin B was higher than that of stefin A (p<0.01), cystatin C (p<0.01) and cystatin E/M (p<0.01). Regarding the histological cell type, CPI activity and stefin A concentration were significantly higher in SCC than in AC (all p<0.01). Remarkably, carcinoids, low grade neoplasms, exhibited low stefin A and high cystatin C values. There were no significant differences in CPI activity and the concentrations of stefins A and B, and cystatins C, and E/M as a function of pTNM-stage. Regarding cell differentiation, only stefin A concentration was higher in poorly differentiated tumours (G3) than in well and moderately differentiated cells (G1/G2), (112 vs 68 ngmg⁻¹ protein, p<0.01).

Correlations between cystatin levels and CPI activity. In NSCLC, the levels of stefins A and B correlated with CPI activity (p<0.01, r=0.4; p<0.05, r=0.27, respectively). A weak correlation was observed between stefins A and B (p<0.05, r=0.3). There was no correlation between cystatins C, E/M and stefins A and B or between cystatins C, E/M and CPI activity. In lung tissue no correlation between cystatins was observed.

Stefin A levels were validated in 43 matched pairs of tumour and adjacent lung parenchyma by using another commercially available ELISA (BioAss, Diessen, Germany). A good correlation was obtained between stefin A values measured by ELISAs from Krka and from BioAss (P<0.01, r=0.73, n=86).

Univariate and multivariate survival analyses. Univariate analysis of NSCLC patients showed CPI activity, and stefins A and B to have a significant prognostic value over a 7-year observation period (Table III). Notably, patients with high inhibitory activity or protein levels had a better prognosis.
than patients with low levels in all three cases. A similar result was found in a subgroup of patients with SCC (Fig. 2), whereas in patients with AC, only CPI activity and stefin B remained significant predictive factors. Cystatin C and E/M levels did not correlate with the survival of lung cancer patients, either in the study group of patients with NSCLC or in the subgroups of patients with SCC or AC.

In multivariate analysis, only those factors having a significant impact on overall survival probability in univariate analysis were included (Table IV). pTNM-staging was the most powerful predictor of survival in NSCLC patients. CPI activity, and stefins A and B remained significant and independent prognostic factors with equal prognostic value.

Discussion

It has been suggested that in cancer, the increased levels of cysteine protease activity, not being balanced by a
corresponding increase of cysteine protease inhibitors, are involved in remodelling and degradation of extracellular matrix proteins, a proteolytic event associated with tumour spread, invasion and metastasis (36). An enhanced expression of cystatins would be expected to diminish the tumour-associated proteolytic activity and indeed, there is evidence of a suppressive role of tumour-associated cystatins in various cancer types (21,37). Moreover, increased levels of stefins A, B and cystatin C in tumour tissues have been shown to correlate with a favourable prognosis of cancer patients (8,38,39).

In contrast, animal models with an excluded expression of particular cystatin do not support a suppressive function for CPI in cancer. In cystatin C (40) and stefin B (Kos et al...
unpublished data) knock-out mice, a significantly lower metastatic spread was detected than in wild-type animals. Similarly, higher levels of stefins A, B and cystatin C in body fluids have been associated with a poor prognosis of cancer patients (41). Alterations in secretion may result in higher extracellular and lower intracellular levels of cystatins and, therefore, a reverse correlation with patient survival is to be expected. However, cysteine proteases, and consequently their inhibitors, are involved in various physiological processes, including those which may act in a manner opposing tumour inhibitors, are involved in various physiological processes, including those which may act in a manner opposing tumour progression, such as apoptosis (42), activation of T-cell immune response (43,44) and cell migration and seeding (40). Thus, besides their concentration, the cell and tissue localization of cystatins could also make a critical switch between harmless and harmful.

Different biochemical properties of cystatins provide another reason for their distinct function in cancer processes. In general, all cystatins are tight binding inhibitors of the Cl family of cysteine proteases, including human cathepsins B, H, L, K, S; however, the inhibitory profile of a particular cystatin is rather specific. For example, stefin B is a much weaker inhibitor of cathepsin B than the structurally related stefin A (45). Also, cystatin F does not inhibit cathepsin B whereas cystatin C, a related type II cystatin, has a high affinity for it (46). Moreover, in contrast to stefins A and B, the type II cystatins C, E/M and F, possess a second reactive site for inhibiting the C13 family of cysteine proteases (legumain) presumed to be involved in antigen presentation (47). Type II cystatins also exhibit functions that are not related to protease inhibition such as regulation of growth factors or induction of cytokines (4,6,7). Besides specific binding the secretion of type II but not type I cystatins may also regulate the inhibitory potential against intracellular and extracellular targets.

In this study we observed a clear distinction between type I and type II cystatins with regard to their concentration in lung tumours. The levels of stefins A and B were both higher in tumour tissues than in their control counterparts whereas type II cystatins C and E/M were lower in tumour tissues. Such an inhibitory profile could significantly enhance the proteolytic activities of intracellular endopeptidases, such as cathepsins L and S, which are less effectively inhibited by stefins than by type II cystatins, but only to a lower extent by the activity of cathepsin B. However, stefins are cystytic inhibitors whereas cathepsins are localized in lysosomes and their possible interaction still needs to be discovered.

On immunohistochemical analysis, type I and type II cystatins showed intense staining in tumour cells and also in the surrounding histiocytes, predominantly macrophages, similar to that reported for cathepsins B and L, which were found in large amounts in tumour cells and histiocytes in lung and other tumours (8,15). It has been suggested that the histiocytes could be a major source of harmful tumour-associated proteolytic activity (36) and, therefore, the localization of cystatins in this cell type does not necessarily mean successful inactivation of their targets. Cystatin F was also detected in tumour cells and histiocytes. Although cystatin F is a type II cystatin, it was found intracellularly in lysosome-like vesicles and due to its inhibitory properties it could effectively impair the endopeptidase activity of cathepsins L, K, V and F (46). Previously its expression was reported to be restricted to haematopoietic cells, very likely involved in processes of the immune response. The demonstration here of cystatin F in primary tumours, together with the reported overexpression of cystatin F mRNA in liver metastatic tumours by Morita et al (48) suggests a function other than regulation of the immune response. mRNA for cystatin E/M has also been reported to be more highly expressed in metastatic oropharyngeal squamous cell carcinoma than in primary tumours (49). In this study we did not find any difference in its protein levels in primary and secondary lung tumours, and our results are consistent with those of Sotiropoulu et al (50) showing down-regulation of cystatin E/M in breast cancer.

The prognostic information concurs with the concept of different roles in malignant disease for type I and type II cystatins. Stefin A and stefin B showed a significant prognostic value in patients with NSCLC, and patients with high levels of stefins A or B exhibited better prognosis than those with low stefin levels. The same held true for total CPI activity, whereas the levels of cystatins C and E/M did not correlate with survival. For NSCLC patients the stage of the disease and the histological cell type are the most important factors used in clinical routine. In multivariate analysis we statistically weighted stefin A, stefin B and CPI activity with these two established factors to assess their relative prognostic impact. pTNM staging remained the most powerful predictor of survival for NSCLC patients, however, stefin A, stefin B and CPI activity also proved to be independent prognostic factors, enabling eventually better prognostic discrimination between low- and high-risk lung cancer patients than the use of the established factors alone. Furthermore, stefins A and B may provide prognostic information separately for both sub-types of NSCLC, i.e. SCC and AC. The present results confirm our previously reported increased levels of stefins A and B in lung tumours (13) and are consistent with those of Krepeka et al (17) who demonstrated a significant increase of stefin A in lung tumours. Similarly, the studies on head and neck carcinomas also provided a strong positive association between levels of stefins A and B and survival probability (39).

In conclusion, our results indicate that cystatins are implicated in the progression of lung cancer and suggest two
distinct pathways by which cysteine proteases are regulated in lung tumours. Type I cystatins, stefins A and B are up-regulated in tumour tissue and, to a certain extent could counter-balance the over-expressed tumour-associated proteolytic activity. Their function as tumour suppressors is supported by survival analysis, which associated their high levels with a better outcome of cancer patients. In contrast, however, type II cystatins C and E/M are down-regulated in lung tumours. Although their role remains protective within the tumour, their lower levels could allow a surplus of harmful tumour-associated proteolytic activity. Further studies are needed to clarify the still elusive regulation of selected cystatins in tumour tissue, their role in the interplay between tumour and stroma cells and the relevance of the uptake of extra-cellular cystatins by these cells for intra-cellular proteolysis. Additionally, more studies with a larger number of patients need to be carried out to evaluate the prognostic strength and potential clinical use of stefins A and B in NSCLC patients.

Acknowledgements

The authors are grateful to Wolfgang Klein, Beate Schaufler, Theresia Trull and Anne-Catherine Löström for their excellent technical assistance, to Dr Hans Knoch, Dr Clemens Kraft, Alexander Staib and Johannes Schumacher for providing tissue homogenates and clinical data on lung cancer patients and to Dr Katarina Håkansson for helpful discussions. We thank Dr Heinrich Bülzebruck and Dr Werner Rittgen for their support with the statistical evaluation and Professor Roger Pain for critical reading of the manuscript. This study was supported by the Erwin-Riesch Stiftung, Swedish Medical Research Council (project no. 09915), Ministry of High Education, Science and Technology of the Republic of Slovenia and 6th EU Framework IP project Cancer Degradome.

References