Expression of miR-21, miR-31, miR-96 and miR-135b is correlated with the clinical parameters of colorectal cancer

  • Authors:
    • Xin Min Xu
    • Jian Chang Qian
    • Zhou Lu Deng
    • Zhe Cai
    • Tao  Tang
    • Peng Wang
    • Ke Hua Zhang
    • Jian-Ping Cai
  • View Affiliations

  • Published online on: May 14, 2012     https://doi.org/10.3892/ol.2012.714
  • Pages: 339-345
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The aim of this study was to determine the expression of miR-21, miR-31, miR-96 and miR-135b in 52 paired colorectal cancer (CRC) tissues and to analyze the correlation between microRNAs (miRNAs) and clinicopathological features. We developed a quantification method that relies on a standard plot, constructed from known concentrations of standards, in order to measure the number of miRNAs. In addition to this, we analyzed the expression levels of miR-21, miR-31, miR-96 and miR-135b in 52 cases of primary CRC and corresponding normal mucosal tissue using real-time PCR with SYBR-Green I. An independent sample t-test was used to compare the differential expression between tumor tissues and normal mucosal tissues. The Mann-Whitney U and Kruskall‑Wallis tests were used to compare the correlation between miRNA expression levels and clinicopathological features. The expression of miR-21, miR-31, miR-96 and miR‑135b was upregulated in the CRC tissues compared to normal mucosal tissues (P<0.05). Furthermore, miR-21 and miR-135b were positively correlated with the clinical stage (P=0.048 and P=0.029, respectively), while miR-96 and miR-135b were correlated with liver metastasis (P=0.006 and P=0.013, respectively). Our results suggest that miR-21, miR-31, miR-96 and miR-135b may function in the process of CRC development and progression. miR-135b levels in particular may correlate with the degree of malignancy.

References

1 

Jemal A, Siegel R, Xu J and Ward E: Cancer statistics. CA Cancer J Clin. 60:277–300. 2010.

2 

Mandel JS, Bond JH, Church TR, et al: Reducing mortality from colorectal cancer by screening for fecal occult blood. Minnesota Colon Cancer Control Study. N Engl J Med. 328:1365–1371. 1993. View Article : Google Scholar : PubMed/NCBI

3 

Jeon CH, Lee HI, Shin IH and Park JW: Genetic alterations of APC, K-ras, p53, MSI, and MAGE in Korean colorectal cancer patients. Int J Colorectal Dis. 23:29–35. 2008. View Article : Google Scholar : PubMed/NCBI

4 

Slack FJ and Weidhaas JB: MicroRNA in cancer prognosis. N Engl J Med. 359:2720–2722. 2008. View Article : Google Scholar : PubMed/NCBI

5 

Huang GL, Zhang XH, Guo GL, et al: Clinical significance of miR-21 expression in breast cancer: SYBR-Green I-based real-time RT-PCR study of invasive ductal carcinoma. Oncol Rep. 21:673–679. 2009.PubMed/NCBI

6 

Schaefer A, Jung M, Mollenkopf HJ, et al: Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Cancer. 126:1166–1176. 2010.PubMed/NCBI

7 

Meng F, Henson R, Wehbe-Janek H, et al: MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 133:647–658. 2007. View Article : Google Scholar : PubMed/NCBI

8 

Filipowicz W, Bhattacharyya SN and Sonenberg N: Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet. 9:102–114. 2008. View Article : Google Scholar : PubMed/NCBI

9 

Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 116:281–297. 2004. View Article : Google Scholar : PubMed/NCBI

10 

Slaby O, Svoboda M, Fabian P, et al: Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology. 72:397–402. 2007. View Article : Google Scholar : PubMed/NCBI

11 

Liu CJ, Kao SY, Tu HF, et al: Increase of microRNA miR-31 level in plasma could be a potential marker of oral cancer. Oral Dis. 16:360–364. 2010. View Article : Google Scholar : PubMed/NCBI

12 

Borkhardt A, Fuchs U and Tuschl T: MicroRNA in chronic lymphocytic leukemia. N Engl J Med. 354:524–525. 2006. View Article : Google Scholar : PubMed/NCBI

13 

Han Y, Chen J, Zhao X, et al: MicroRNA expression signatures of bladder cancer revealed by deep sequencing. PLoS One. 6:e182862011. View Article : Google Scholar : PubMed/NCBI

14 

Aslam MI, Taylor K, Pringle JH and Jameson JS: MicroRNAs are novel biomarkers of colorectal cancer. Br J Surg. 96:702–710. 2009. View Article : Google Scholar : PubMed/NCBI

15 

Bandrés E, Cubedo E, Agirre X, et al: Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer. 5:292006.PubMed/NCBI

16 

Zhu S, Si ML, Wu H and Mo YY: MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem. 282:14328–14336. 2007. View Article : Google Scholar : PubMed/NCBI

17 

Frankel LB, Christoffersen NR, Jacobsen A, et al: Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem. 283:1026–1033. 2008. View Article : Google Scholar : PubMed/NCBI

18 

Cottonham CL, Kaneko S and Xu L: miR-21 and miR-31 converge on TIAM1 to regulate migration and invasion of colon carcinoma cells. J Biol Chem. 285:35293–35302. 2010. View Article : Google Scholar : PubMed/NCBI

19 

Nagel R, le Sage C, Diosdado B, et al: Regulation of the adenomatous polyposis coli gene by the miR-135 family in colorectal cancer. Cancer Res. 68:5795–5802. 2008. View Article : Google Scholar : PubMed/NCBI

20 

Dhanasekaran S, Doherty TM and Kenneth J: Comparison of different standards for real-time PCR-based absolute quantification. J Immunol Methods. 354:34–39. 2010. View Article : Google Scholar : PubMed/NCBI

21 

Whelan JA, Russell NB and Whelan MA: A method for the absolute quantification of cDNA using real-time PCR. J Immunol Methods. 278:261–269. 2003. View Article : Google Scholar : PubMed/NCBI

22 

Lee C, Kim J, Shin SG and Hwang S: Absolute and relative QPCR quantification of plasmid copy number in Escherichia coli. J Biotechnol. 123:273–280. 2006. View Article : Google Scholar : PubMed/NCBI

23 

Chen C, Ridzon DA, Broomer AJ, et al: Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 33:e1792005. View Article : Google Scholar : PubMed/NCBI

24 

Aprelikova O, Yu X, Palla J, et al: The role of miR-31 and its target gene SATB2 in cancer-associated fibroblasts. Cell Cycle. 9:4387–4398. 2010. View Article : Google Scholar : PubMed/NCBI

25 

Michael MZ, SM OC, van Holst Pellekaan NG, et al: Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res. 1:882–891. 2003.PubMed/NCBI

26 

Yu S, Lu Z, Liu C, et al: miRNA-96 suppresses KRAS and functions as a tumor suppressor gene in pancreatic cancer. Cancer Res. 70:6015–6025. 2010. View Article : Google Scholar : PubMed/NCBI

27 

Lu J, Getz G, Miska EA, et al: MicroRNA expression profiles classify human cancers. Nature. 435:834–838. 2005. View Article : Google Scholar : PubMed/NCBI

28 

Allawi HT, Dahlberg JE, Olson S, et al: Quantitation of microRNAs using a modified Invader assay. RNA. 10:1153–1161. 2004. View Article : Google Scholar : PubMed/NCBI

29 

Wang CJ, Zhou ZG, Wang L, et al: Clinicopathological significance of microRNA-31, -143 and -145 expression in colorectal cancer. Dis Markers. 26:27–34. 2009. View Article : Google Scholar : PubMed/NCBI

30 

Lu Z, Liu M, Stribinskis V, et al: MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene. 27:4373–4379. 2008. View Article : Google Scholar : PubMed/NCBI

31 

Huang Q, Gumireddy K, Schrier M, et al: The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol. 10:202–210. 2008. View Article : Google Scholar : PubMed/NCBI

32 

Lee EJ, Gusev Y, Jiang J, et al: Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer. 120:1046–1054. 2007. View Article : Google Scholar : PubMed/NCBI

33 

Tong AW, Fulgham P, Jay C, et al: MicroRNA profile analysis of human prostate cancers. Cancer Gene Ther. 16:206–216. 2009.PubMed/NCBI

Related Articles

Journal Cover

August 2012
Volume 4 Issue 2

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Xu, X.M., Qian, J.C., Deng, Z.L., Cai, Z., Tang, T., Wang, P. ... Cai, J. (2012). Expression of miR-21, miR-31, miR-96 and miR-135b is correlated with the clinical parameters of colorectal cancer. Oncology Letters, 4, 339-345. https://doi.org/10.3892/ol.2012.714
MLA
Xu, X. M., Qian, J. C., Deng, Z. L., Cai, Z., Tang, T., Wang, P., Zhang, K. H., Cai, J."Expression of miR-21, miR-31, miR-96 and miR-135b is correlated with the clinical parameters of colorectal cancer". Oncology Letters 4.2 (2012): 339-345.
Chicago
Xu, X. M., Qian, J. C., Deng, Z. L., Cai, Z., Tang, T., Wang, P., Zhang, K. H., Cai, J."Expression of miR-21, miR-31, miR-96 and miR-135b is correlated with the clinical parameters of colorectal cancer". Oncology Letters 4, no. 2 (2012): 339-345. https://doi.org/10.3892/ol.2012.714