Open Access

Identification of candidate genes associated with the pathogenesis of small cell lung cancer via integrated bioinformatics analysis

  • Authors:
    • Yi Liao
    • Guofang Yin
    • Xue Wang
    • Ping Zhong
    • Xianming Fan
    • Chengliang Huang
  • View Affiliations

  • Published online on: July 29, 2019     https://doi.org/10.3892/ol.2019.10685
  • Pages: 3723-3733
  • Copyright: © Liao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The pathogenesis of small cell lung cancer (SCLC), a highly metastatic malignant tumor, remains unclear. In the present study, important genes and pathways that are involved in the pathogenesis of SCLC were identified. The following four datasets were downloaded from the Gene Expression Omnibus: GSE60052, GSE43346, GSE15240 and GSE6044. The differentially expressed genes (DEGs) between the SCLC samples and the normal samples were analyzed using R software. The limma package was used for every dataset. The RobustRankAggreg package was used to integrate the DEGs from the four datasets. Functional and pathway enrichment analyses were conducted using the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases with FunRich software and R software, respectively. In addition, the protein‑protein interaction (PPI) network of the DEGs was constructed using the STRING database and Cytoscape software. Hub genes and significant modules were identified using Molecular Complex Detection in Cytoscape software. Finally, the expression values of hub genes were determined using the Oncomine online database. In total, 412 DEGs were identified following the integration of the four datasets, with 146 upregulated genes and 266 downregulated genes. The upregulated DEGs were primarily enriched in the cell cycle, cell division and microtubule binding. The downregulated DEGs were primarily enriched in the complement and coagulation cascades, the cytokine‑mediated signaling pathway and protein binding. Eight hub genes and 1 significant module correlated to the cell cycle pathway were identified based on a subset of the PPI network. Finally, five hub genes were identified as highly expressed in SCLC tissue compared with normal tissue. The cell cycle pathway may be the pathway most closely associated with the pathogenesis of SCLC. NDC80, BUB1B, PLK1, CDC20 and MAD2L1 should be the focus of follow‑up studies regarding the diagnosis and treatment of SCLC.

References

1 

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Landwehr MS, Watson SE, Macpherson CF, Novak KA and Johnson RH: The cost of cancer: A retrospective analysis of the financial impact of cancer on young adults. Cancer Med. 5:863–870. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Gao H, Niu Y, Li M, Fang S and Guo L: Identification of DJ-1 as a contributor to multidrug resistance in human small-cell lung cancer using proteomic analysis. Int J Exp Pathol. 98:67–74. 2017. View Article : Google Scholar : PubMed/NCBI

4 

Huang C, Huang M, Chen W, Zhu W, Meng H, Guo L, Wei T and Zhang J: N-acetylglucosaminyltransferase V modulates radiosensitivity and migration of small cell lung cancer through epithelial-mesenchymal transition. FEBS J. 282:4295–4306. 2015. View Article : Google Scholar : PubMed/NCBI

5 

Demedts IK, Vermaelen KY and van Meerbeeck JP: Treatment of extensive-stage small cell lung carcinoma: Current status and future prospects. Eur Respir J. 35:202–215. 2010. View Article : Google Scholar : PubMed/NCBI

6 

Lam WK: Lung cancer in Asian women-the environment and genes. Respirology. 10:408–417. 2005. View Article : Google Scholar : PubMed/NCBI

7 

Hosgood HD III, Boffetta P, Greenland S, Lee YC, McLaughlin J, Seow A, Duell EJ, Andrew AS, Zaridze D, Szeszenia-Dabrowska N, et al: In-home coal and wood use and lung cancer risk: A pooled analysis of the international lung cancer consortium. Environ Health Perspect. 118:1743–1747. 2010. View Article : Google Scholar : PubMed/NCBI

8 

Wu PF, Lee CH, Wang MJ, Goggins WB, Chiang TA, Huang MS and Ko YC: Cancer aggregation and complex segregation analysis of families with female non-smoking lung cancer probands in Taiwan. Eur J Cancer. 40:260–266. 2004. View Article : Google Scholar : PubMed/NCBI

9 

Kulasingam V and Diamandis EP: Strategies for discovering novel cancer biomarkers through utilization of emerging technologies. Nat Clin Pract Oncol. 5:588–599. 2008. View Article : Google Scholar : PubMed/NCBI

10 

Matamala N, Vargas MT, González-Cámpora R, Miñambres R, Arias JI, Menéndez P, Andrés-León E, Gómez-López G, Yanowsky K, Calvete-Candenas J, et al: Tumor microRNA expression profiling identifies circulating microRNAs for early breast cancer detection. Clin Chem. 61:1098–1106. 2015. View Article : Google Scholar : PubMed/NCBI

11 

Lusito E, Felice B, D'Ario G, Ogier A, Montani F, Di Fiore PP and Bianchi F: Unraveling the role of low-frequency mutated genes in breast cancer. Bioinformatics. 35:36–46. 2019. View Article : Google Scholar : PubMed/NCBI

12 

Zhang L, Yang Y, Cheng L, Cheng Y, Zhou HH and Tan ZR: Identification of common genes refers to colorectal carcinogenesis with paired cancer and noncancer samples. Dis Markers. 2018:34527392018. View Article : Google Scholar : PubMed/NCBI

13 

Liu H, Wei S, Zhang L, Yuan C, Duan Y and Wang Q: Secreted phosphoprotein 1 promotes the development of small cell lung cancer cells by inhibiting autophagy and apoptosis. Pathol Oncol Res. 2018. View Article : Google Scholar

14 

Ni Z, Wang X, Zhang T, Li L and Li J: Comprehensive analysis of differential expression profiles reveals potential biomarkers associated with the cell cycle and regulated by p53 in human small cell lung cancer. Exp Ther Med. 15:3273–3282. 2018.PubMed/NCBI

15 

Jiang L, Huang J, Higgs BW, Hu Z, Xiao Z, Yao X, Conley S, Zhong H, Liu Z, Brohawn P, et al: Genomic landscape survey identifies SRSF1 as a key oncodriver in small cell lung cancer. PLoS Genet. 12:e10058952016. View Article : Google Scholar : PubMed/NCBI

16 

Sato T, Kaneda A, Tsuji S, Isagawa T, Yamamoto S, Fujita T, Yamanaka R, Tanaka Y, Nukiwa T, Marquez VE, et al: PRC2 overexpression and PRC2-target gene repression relating to poorer prognosis in small cell lung cancer. Sci Rep. 3:19112013. View Article : Google Scholar : PubMed/NCBI

17 

Daniel VC, Marchionni L, Hierman JS, Rhodes JT, Devereux WL, Rudin CM, Yung R, Parmigiani G, Dorsch M, Peacock CD and Watkins DN: A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro. Cancer Res. 69:3364–3373. 2009. View Article : Google Scholar : PubMed/NCBI

18 

Rohrbeck A, Neukirchen J, Rosskopf M, Pardillos GG, Geddert H, Schwalen A, Gabbert HE, von Haeseler A, Pitschke G, Schott M, et al: Gene expression profiling for molecular distinction and characterization of laser captured primary lung cancers. J Transl Med. 6:692008. View Article : Google Scholar : PubMed/NCBI

19 

Gautier L, Cope L, Bolstad BM and Irizarry RA: Affy-analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. 20:307–315. 2004. View Article : Google Scholar : PubMed/NCBI

20 

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W and Smyth GK: limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43:e472015. View Article : Google Scholar : PubMed/NCBI

21 

Kolde R, Laur S, Adler P and Vilo J: Robust rank aggregation for gene list integration and meta-analysis. Bioinformatics. 28:573–580. 2012. View Article : Google Scholar : PubMed/NCBI

22 

Pathan M, Keerthikumar S, Chisanga D, Alessandro R, Ang CS, Askenase P, Batagov AO, Benito-Martin A, Camussi G, Clayton A, et al: A novel community driven software for functional enrichment analysis of extracellular vesicles data. J Extracell Vesicles. 6:13214552017. View Article : Google Scholar : PubMed/NCBI

23 

Yu G, Wang LG, Yan GR and He QY: DOSE: An R/Bioconductor package for disease ontology semantic and enrichment analysis. Bioinformatics. 31:608–609. 2015. View Article : Google Scholar : PubMed/NCBI

24 

Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P, et al: The STRING database in 2011: Functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 39:D561–D568. 2011. View Article : Google Scholar : PubMed/NCBI

25 

Smoot ME, Ono K, Ruscheinski J, Wang PL and Ideker T: Cytoscape 2.8: New features for data integration and network visualization. Bioinformatics. 27:431–432. 2011. View Article : Google Scholar : PubMed/NCBI

26 

Saito R, Smoot ME, Ono K, Ruscheinski J, Wang PL, Lotia S, Pico AR, Bader GD and Ideker T: A travel guide to cytoscape plugins. Nat Methods. 9:1069–1076. 2012. View Article : Google Scholar : PubMed/NCBI

27 

Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Varambally R, Yu J, Briggs BB, Barrette TR, Anstet MJ, Kincead-Beal C, Kulkarni P, et al: Oncomine 3.0: Genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia. 9:166–180. 2007. View Article : Google Scholar : PubMed/NCBI

28 

Garber ME, Troyanskaya OG, Schluens K, Petersen S, Thaesler Z, Pacyna-Gengelbach M, van de Rijn M, Rosen GD, Perou CM, Whyte RI, et al: Diversity of gene expression in adenocarcinoma of the lung. Proc Natl Acad Sci USA. 98:13784–13789. 2001. View Article : Google Scholar : PubMed/NCBI

29 

Bhattacharjee A, Richards WG, Staunton J, Li C, Monti S, Vasa P, Ladd C, Beheshti J, Bueno R, Gillette M, et al: Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci USA. 98:13790–13795. 2001. View Article : Google Scholar : PubMed/NCBI

30 

Pietanza MC, Byers LA, Minna JD and Rudin CM: Small cell lung cancer: Will recent progress lead to improved outcomes? Clin Cancer Res. 21:2244–2255. 2015. View Article : Google Scholar : PubMed/NCBI

31 

Karachaliou N, Pilotto S, Lazzari C, Bria E, de Marinis F and Rosell R: Cellular and molecular biology of small cell lung cancer: An overview. Transl Lung Cancer Res. 5:2–15. 2016.PubMed/NCBI

32 

George J, Lim JS, Jang SJ, Cun Y, Ozretić L, Kong G, Leenders F, Lu X, Fernández-Cuesta L, Bosco G, et al: Comprehensive genomic profiles of small cell lung cancer. Nature. 524:47–53. 2015. View Article : Google Scholar : PubMed/NCBI

33 

Liu Z, Zhong Y, Chen YJ and Chen H: SOX11 regulates apoptosis and cell cycle in hepatocellular carcinoma via Wnt/β-catenin signaling pathway. Biotechnol Appl Biochem. 66:240–246. 2019. View Article : Google Scholar : PubMed/NCBI

34 

An MJ, Kim DH, Kim CH, Kim M, Rhee S, Seo SB and Kim JW: Histone demethylase KDM3B regulates the transcriptional network of cell-cycle genes in hepatocarcinoma HepG2 cells. Biochem Biophys Res Commun. 508:576–582. 2019. View Article : Google Scholar : PubMed/NCBI

35 

Sun X, Hu Y, Wu J, Shi L, Zhu L, Xi PW, Wei JF and Ding Q: RBMS2 inhibits the proliferation by stabilizing P21 mRNA in breast cancer. J Exp Clin Cancer Res. 37:2982018. View Article : Google Scholar : PubMed/NCBI

36 

Matsushita Y, Furutani Y, Matsuoka R and Furukawa T: Hot water extract of Agaricus blazei Murrill specifically inhibits growth and induces apoptosis in human pancreatic cancer cells. BMC Complement Altern Med. 18:3192018. View Article : Google Scholar : PubMed/NCBI

37 

Lee KS, Kim SW and Lee HS: Orostachys japonicus induce p53-dependent cell cycle arrest through the MAPK signaling pathway in OVCAR-3 human ovarian cancer cells. Food Sci Nutr. 6:2395–2401. 2018. View Article : Google Scholar : PubMed/NCBI

38 

Yang G, Chen Q, Xiao J, Zhang H, Wang Z and Lin X: Identification of genes and analysis of prognostic values in nonsmoking females with non-small cell lung carcinoma by bioinformatics analyses. Cancer Manag Res. 10:4287–4295. 2018. View Article : Google Scholar : PubMed/NCBI

39 

Wang GY, Li L, Liu B, Han X, Wang CH and Wang JW: Integrated bioinformatic analysis unveils significant genes and pathways in the pathogenesis of supratentorial primitive neuroectodermal tumor. Onco Targets Ther. 11:1849–1859. 2018. View Article : Google Scholar : PubMed/NCBI

40 

Hubaux R, Thu KL, Coe BP, MacAulay C, Lam S and Lam WL: EZH2 promotes E2F-driven SCLC tumorigenesis through modulation of apoptosis and cell-cycle regulation. J Thorac Oncol. 8:1102–1106. 2013. View Article : Google Scholar : PubMed/NCBI

41 

Lin YC, Su JH, Lin SC, Chang CC, Hsia TC, Tung YT and Lin CC: A soft coral-derived compound, 11-dehydrosinulariolide, induces G2/M cell cycle arrest and apoptosis in small cell lung cancer. Mar Drugs. 16:2018. View Article : Google Scholar

42 

Hartwell LH, Culotti J and Reid B: Genetic control of the cell-division cycle in yeast. I. Detection of mutants. Proc Natl Acad Sci USA. 66:352–359. 1970. View Article : Google Scholar : PubMed/NCBI

43 

Wan L, Tan M, Yang J, Inuzuka H, Dai X, Wu T, Liu J, Shaik S, Chen G, Deng J, et al: APC(Cdc20) suppresses apoptosis through targeting Bim for ubiquitination and destruction. Dev Cell. 29:377–391. 2014. View Article : Google Scholar : PubMed/NCBI

44 

Wu WJ, Hu KS, Wang DS, Zeng ZL, Zhang DS, Chen DL, Bai L and Xu RH: CDC20 overexpression predicts a poor prognosis for patients with colorectal cancer. J Transl Med. 11:1422013. View Article : Google Scholar : PubMed/NCBI

45 

Li J, Gao JZ, Du JL, Huang ZX and Wei LX: Increased CDC20 expression is associated with development and progression of hepatocellular carcinoma. Int J Oncol. 45:1547–1555. 2014. View Article : Google Scholar : PubMed/NCBI

46 

Ding ZY, Wu HR, Zhang JM, Huang GR and Ji DD: Expression characteristics of CDC20 in gastric cancer and its correlation with poor prognosis. Int J Clin Exp Pathol. 7:722–727. 2014.PubMed/NCBI

47 

Choi JW, Kim Y, Lee JH and Kim YS: High expression of spindle assembly checkpoint proteins CDC20 and MAD2 is associated with poor prognosis in urothelial bladder cancer. Virchows Arch. 463:681–687. 2013. View Article : Google Scholar : PubMed/NCBI

48 

Kim Y, Choi JW, Lee JH and Kim YS: MAD2 and CDC20 are upregulated in high-grade squamous intraepithelial lesions and squamous cell carcinomas of the uterine cervix. Int J Gynecol Pathol. 33:517–523. 2014. View Article : Google Scholar : PubMed/NCBI

49 

Taniguchi K, Momiyama N, Ueda M, Matsuyama R, Mori R, Fujii Y, Ichikawa Y, Endo I, Togo S and Shimada H: Targeting of CDC20 via small interfering RNA causes enhancement of the cytotoxicity of chemoradiation. Anticancer Res. 28:1559–1563. 2008.PubMed/NCBI

50 

Kidokoro T, Tanikawa C, Furukawa Y, Katagiri T, Nakamura Y and Matsuda K: CDC20, a potential cancer therapeutic target, is negatively regulated by p53. Oncogene. 27:1562–1571. 2008. View Article : Google Scholar : PubMed/NCBI

51 

Guo Y, Kim C, Ahmad S, Zhang J and Mao Y: CENP-E-dependent BubR1 autophosphorylation enhances chromosome alignment and the mitotic checkpoint. J Cell Biol. 198:205–217. 2012. View Article : Google Scholar : PubMed/NCBI

52 

Malureanu LA, Jeganathan KB, Hamada M, Wasilewski L, Davenport J and van Deursen JM: BubR1 N terminus acts as a soluble inhibitor of cyclin B degradation by APC/C(Cdc20) in interphase. Dev Cell. 16:118–131. 2009. View Article : Google Scholar : PubMed/NCBI

53 

Zhuang L, Yang Z and Meng Z: Upregulation of BUB1B, CCNB1, CDC7, CDC20, and MCM3 in tumor tissues predicted worse overall survival and disease-free survival in hepatocellular carcinoma patients. Biomed Res Int. 2018:78973462018. View Article : Google Scholar : PubMed/NCBI

54 

Lee E, Pain M, Wang H, Herman JA, Toledo CM, DeLuca JG, Yong RL, Paddison P and Zhu J: Sensitivity to BUB1B inhibition defines an alternative classification of glioblastoma. Cancer Res. 77:5518–5529. 2017. View Article : Google Scholar : PubMed/NCBI

55 

Ma Q, Liu Y, Shang L, Yu J and Qu Q: The FOXM1/BUB1B signaling pathway is essential for the tumorigenicity and radioresistance of glioblastoma. Oncol Rep. 38:3367–3375. 2017.PubMed/NCBI

56 

Chen L, Zhuo D, Chen J and Yuan H: Screening feature genes of lung carcinoma with DNA microarray analysis. Int J Clin Exp Med. 8:12161–12171. 2015.PubMed/NCBI

57 

Zhang Y, Foreman O, Wigle DA, Kosari F, Vasmatzis G, Salisbury JL, Van Deursen J and Galardy PJ: USP44 regulates centrosome positioning to prevent aneuploidy and suppress tumorigenesis. J Clin Invest. 122:4362–4374. 2012. View Article : Google Scholar : PubMed/NCBI

58 

Cheng Y, Li K, Diao D, Zhu K, Shi L, Zhang H, Yuan D, Guo Q, Wu X, Liu D and Dang C: Expression of KIAA0101 protein is associated with poor survival of esophageal cancer patients and resistance to cisplatin treatment in vitro. Lab Invest. 93:1276–1287. 2013. View Article : Google Scholar : PubMed/NCBI

59 

Michel L, Diaz-Rodriguez E, Narayan G, Hernando E, Murty VV and Benezra R: Complete loss of the tumor suppressor MAD2 causes premature cyclin B degradation and mitotic failure in human somatic cells. Proc Natl Acad Sci USA. 101:4459–4464. 2004. View Article : Google Scholar : PubMed/NCBI

60 

Yuan B, Xu Y, Woo JH, Wang Y, Bae YK, Yoon DS, Wersto RP, Tully E, Wilsbach K and Gabrielson E: Increased expression of mitotic checkpoint genes in breast cancer cells with chromosomal instability. Clin Cancer Res. 12:405–410. 2006. View Article : Google Scholar : PubMed/NCBI

61 

Kim HS, Park KH, Kim SA, Wen J, Park SW, Park B, Gham CW, Hyung WJ, Noh SH, Kim HK and Song SY: Frequent mutations of human Mad2, but not Bub1, in gastric cancers cause defective mitotic spindle checkpoint. Mutat Res. 578:187–201. 2005. View Article : Google Scholar : PubMed/NCBI

62 

Shi YX, Zhu T, Zou T, Zhuo W, Chen YX, Huang MS, Zheng W, Wang CJ, Li X, Mao XY, et al: Prognostic and predictive values of CDK1 and MAD2L1 in lung adenocarcinoma. Oncotarget. 7:85235–85243. 2016. View Article : Google Scholar : PubMed/NCBI

63 

Wordeman L, Wagenbach M and von Dassow G: MCAK facilitates chromosome movement by promoting kinetochore microtubule turnover. J Cell Biol. 179:869–879. 2007. View Article : Google Scholar : PubMed/NCBI

64 

Duan H, Zhang X, Wang FX, Cai MY, Ma GW, Yang H, Fu JH, Tan ZH, Fu XY, Ma QL, et al: KIF-2C expression is correlated with poor prognosis of operable esophageal squamous cell carcinoma male patients. Oncotarget. 7:80493–80507. 2016. View Article : Google Scholar : PubMed/NCBI

65 

Bie L, Zhao G, Wang YP and Zhang B: Kinesin family member 2C (KIF2C/MCAK) is a novel marker for prognosis in human gliomas. Clin Neurol Neurosurg. 114:356–360. 2012. View Article : Google Scholar : PubMed/NCBI

66 

Bidkhori G, Narimani Z, Hosseini Ashtiani S, Moeini A, Nowzari-Dalini A and Masoudi-Nejad A: Reconstruction of an integrated genome-scale co-expression network reveals key modules involved in lung adenocarcinoma. PLoS One. 8:e675522013. View Article : Google Scholar : PubMed/NCBI

67 

Song YJ, Tan J, Gao XH and Wang LX: Integrated analysis reveals key genes with prognostic value in lung adenocarcinoma. Cancer Manag Res. 10:6097–6108. 2018. View Article : Google Scholar : PubMed/NCBI

68 

D'Archivio S and Wickstead B: Trypanosome outer kinetochore proteins suggest conservation of chromosome segregation machinery across eukaryotes. J Cell Biol. 216:379–391. 2017. View Article : Google Scholar : PubMed/NCBI

69 

Ju LL, Chen L, Li JH, Wang YF, Lu RJ, Bian ZL and Shao JG: Effect of NDC80 in human hepatocellular carcinoma. World J Gastroenterol. 23:3675–3683. 2017. View Article : Google Scholar : PubMed/NCBI

70 

Wang L, Dou X, Liu T, Lu W, Ma Y and Yang Y: Tumor size and lymph node metastasis are prognostic markers of small cell lung cancer in a Chinese population. Medicine (Baltimore). 97:e117122018. View Article : Google Scholar : PubMed/NCBI

71 

Xu B, Wu DP, Xie RT, Liu LG and Yan XB: Elevated NDC80 expression is associated with poor prognosis in osteosarcoma patients. Eur Rev Med Pharmacol Sci. 21:2045–2053. 2017.PubMed/NCBI

72 

Yuan W, Xie S, Wang M, Pan S, Huang X, Xiong M, Xiao RJ, Xiong J, Zhang QP and Shao L: Bioinformatic analysis of prognostic value of ZW10 interacting protein in lung cancer. Onco Targets Ther. 11:1683–1695. 2018. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

October 2019
Volume 18 Issue 4

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Liao, Y., Yin, G., Wang, X., Zhong, P., Fan, X., & Huang, C. (2019). Identification of candidate genes associated with the pathogenesis of small cell lung cancer via integrated bioinformatics analysis. Oncology Letters, 18, 3723-3733. https://doi.org/10.3892/ol.2019.10685
MLA
Liao, Y., Yin, G., Wang, X., Zhong, P., Fan, X., Huang, C."Identification of candidate genes associated with the pathogenesis of small cell lung cancer via integrated bioinformatics analysis". Oncology Letters 18.4 (2019): 3723-3733.
Chicago
Liao, Y., Yin, G., Wang, X., Zhong, P., Fan, X., Huang, C."Identification of candidate genes associated with the pathogenesis of small cell lung cancer via integrated bioinformatics analysis". Oncology Letters 18, no. 4 (2019): 3723-3733. https://doi.org/10.3892/ol.2019.10685