Open Access

Diagnostic value of diffusion‑weighted imaging‑derived apparent diffusion coefficient and its association with histological prognostic factors in breast cancer

  • Authors:
    • Congcong Ren
    • Yu Zou
    • Xiaodan Zhang
    • Kui Li
  • View Affiliations

  • Published online on: July 22, 2019     https://doi.org/10.3892/ol.2019.10651
  • Pages: 3295-3303
  • Copyright : © Ren et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Diffusion‑weighted imaging (DWI) has been proven to be effective in detecting breast malignancies and has been widely implemented for breast imaging. However, the exact association between certain DWI biomarkers and well‑known prognostic factors remains to be fully elucidated. By studying the association between the apparent diffusion coefficient (ADC) and prognostic factors, the present study aimed to explore the diagnostic value and prognostic potential of the ADC in breast lesions. The study included 539 female subjects with histopathologically confirmed breast lesions who underwent DWI of the breast tissue. The diagnoses comprised 307 subjects with malignant breast tumors and 232 with benign breast tumors. The maximum ADC and mean ADC (ADCmean) values of the breast lesions were calculated. For malignant tumors, the association between ADC and major prognostic factors, including histological grade, nuclear grade and lymph node status, as well as estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER‑2) and proliferation marker protein Ki‑67.(Ki‑67) status, were evaluated. The ADCmean demonstrated the best diagnostic performance in distinguishing between malignant and benign lesions. With the optimum cut‑off value at 1.30x10‑3 mm2/sec, ADCmean had a sensitivity and specificity of 84.1 and 90.2%, respectively. In those patients with malignant breast lesions, a decreased ADC was associated with breast lesions with high nuclear and histological grades, and lymph node‑positive, ER‑negative, PR‑negative and HER‑2‑negative status, and Ki‑67 ≥14%. In conclusion, the ADC is a useful imaging biomarker for differentiating between benign and malignant breast tumors. The marked association between the ADC and prognostic factors also demonstrated its value in evaluating the malignancy of breast lesions.

References

1 

van Bodegraven EA, van Raaij JC, Van Goethem M and Tjalma WAA: Guidelines and recommendations for MRI in breast cancer follow-up: A review. Eur J Obstet Gynecol Reprod Biol. 218:5–11. 2017. View Article : Google Scholar : PubMed/NCBI

2 

Quinn EM, Coveney AP and Redmond HP: Use of magnetic resonance imaging in detection of breast cancer recurrence: A systematic review. Ann Surg Oncol. 19:3035–3041. 2012. View Article : Google Scholar : PubMed/NCBI

3 

Mehnati P and Tirtash MJ: Comparative efficacy of four imaging instruments for breast cancer screening. Asian Pac J Cancer Prev. 16:6177–6186. 2015. View Article : Google Scholar : PubMed/NCBI

4 

Koh DM and Collins DJ: Diffusion-weighted MRI in the body: Applications and challenges in oncology. Am J Roentgenol. 188:1622–1635. 2007. View Article : Google Scholar

5 

Chen X, Li WL, Zhang YL, Wu Q, Guo YM and Bai ZL: Meta-analysis of quantitative diffusion-weighted MR imaging in the differential diagnosis of breast lesions. BMC Cancer. 10:6932010. View Article : Google Scholar : PubMed/NCBI

6 

Belli P, Costantini M, Bufi E, Giardina GG, Rinaldi P, Franceschini G and Bonomo L: Diffusion magnetic resonance imaging in breast cancer characterisation: Correlations between the apparent diffusion coefficient and major prognostic factors. Radiol Medica. 120:268–276. 2015. View Article : Google Scholar

7 

Min Q, Shao K, Zhai L, Liu W, Zhu C, Yuan L and Yang J: Differential diagnosis of benign and malignant breast masses using diffusion-weighted magnetic resonance imaging. World J Surg Oncol. 13:322015. View Article : Google Scholar : PubMed/NCBI

8 

Partridge SC, DeMartini WB, Kurland BF, Eby PR, White SW and Lehman CD: Quantitative diffusion-weighted imaging as an adjunct to conventional breast MRI for improved positive predictive value. Am J Roentgenol. 193:1716–1722. 2009. View Article : Google Scholar

9 

Peters NH, Vincken KL, van den Bosch MA, Luijten PR, Mali WP and Bartels LW: Quantitative diffusion weighted imaging for differentiation of benign and malignant breast lesions: The influence of the choice of b-values. J Magn Reson Imaging. 31:1100–1105. 2010. View Article : Google Scholar : PubMed/NCBI

10 

Savas P, Salgado R, Denkert C, Sotiriou C, Darcy PK, Smyth MJ and Loi S: Clinical relevance of host immunity in breast cancer: From TILs to the clinic. Nat Rev Clin Oncol. 13:228–241. 2016. View Article : Google Scholar : PubMed/NCBI

11 

Cheang MCU, Chia SK, Voduc D, Gao D, Leung S, Snider J, Watson M, Davies S, Bernard PS, Parker JS, et al: Ki67 Index, HER2 Status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst. 101:736–750. 2009. View Article : Google Scholar : PubMed/NCBI

12 

Choi SY, Chang YW, Park HJ, Kim HJ, Hong SS and Seo DY: Correlation of the apparent diffusion coefficiency values on diffusion-weighted imaging with prognostic factors for breast cancer. Br J Radiol. 85:e474–e479. 2012. View Article : Google Scholar : PubMed/NCBI

13 

Kim SH, Cha ES, Kim HS, Kang BJ, Choi JJ, Jung JH, Park YG and Suh YJ: Diffusion-weighted imaging of breast cancer: Correlation of the apparent diffusion coefficient value with prognostic factors. J Magn Reson Imaging. 30:615–620. 2009. View Article : Google Scholar : PubMed/NCBI

14 

Elston CW and Ellis IO: Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: Experience from a large study with long-term follow-up. Histopathology. 19:403–410. 1991. View Article : Google Scholar : PubMed/NCBI

15 

Robinson IA, McKee G, Nicholson A, D'Arcy J, Jackson PA, Cook MG and Kissin MW: Prognostic value of cytological grading of fine-needle aspirates from breast carcinomas. Lancet. 343:947–949. 1994. View Article : Google Scholar : PubMed/NCBI

16 

Jacobs GH, Rippey JJ and Altini M: Prediction of aggressive behavior in basal cell carcinoma. Cancer. 49:533–537. 1982. View Article : Google Scholar : PubMed/NCBI

17 

Wei M, Qin J, Yan R, Bi K, Liu C, Yao Z and Lu Q: Association of resting-state network dysfunction with their dynamics of inter-network interactions in depression. J Affect Disord. 174:527–534. 2015. View Article : Google Scholar : PubMed/NCBI

18 

Hammond ME, Hayes DF, Dowsett M, Allred DC, Hagerty KL, Badve S, Fitzgibbons PL, Francis G, Goldstein NS, Hayes M, et al: American society of clinical oncology/college of american pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol. 28:2784–2795. 2010. View Article : Google Scholar : PubMed/NCBI

19 

Dowsett M, Cuzick J, Wale C, Howell T, Houghton J and Baum M: Retrospective analysis of time to recurrence in the ATAC trial according to hormone receptor status: An hypothesis-generating study. J Clin Oncol. 23:7512–7517. 2005. View Article : Google Scholar : PubMed/NCBI

20 

Layfield LJ, Gupta D and Mooney EE: Assessment of tissue estrogen and progesterone receptor levels: A survey of current practice, techniques, and quantitation methods. Breast J. 6:189–196. 2000. View Article : Google Scholar : PubMed/NCBI

21 

Regan MM, Viale G, Mastropasqua MG, Maiorano E, Golouh R, Carbone A, Brown B, Suurküla M, Langman G, Mazzucchelli L, et al: Re-evaluating adjuvant breast cancer trials: Assessing hormone receptor status by immunohistochemical versus extraction assays. J Natl Cancer Inst. 98:1571–1581. 2006. View Article : Google Scholar : PubMed/NCBI

22 

Dowsett M, Allred C, Knox J, Quinn E, Salter J, Wale C, Cuzick J, Houghton J, Williams N, Mallon E, et al: Relationship between quantitative estrogen and progesterone receptor expression and human epidermal growth factor receptor 2 (HER-2) status with recurrence in the arimidex, tamoxifen, alone or in combination trial. J Clin Oncol. 26:1059–1065. 2008. View Article : Google Scholar : PubMed/NCBI

23 

Viale G, Regan MM, Maiorano E, Mastropasqua MG, Dell'Orto P, Rasmussen BB, Raffoul J, Neven P, Orosz Z, Braye S, et al: Prognostic and predictive value of centrally reviewed expression of estrogen and progesterone receptors in a randomized trial comparing letrozole and tamoxifen adjuvant therapy for postmenopausal early breast cancer: BIG 1–98. J Clin Oncol. 25:3846–3852. 2007. View Article : Google Scholar : PubMed/NCBI

24 

Iwamoto T, Booser D, Valero V, Murray JL, Koenig K, Esteva FJ, Ueno NT, Zhang J, Shi W, Qi Y, et al: Estrogen receptor (ER) mRNA and ER-related gene expression in breast cancers that are 1% to 10% ER-positive by immunohistochemistry. J Clin Oncol. 30:729–734. 2012. View Article : Google Scholar : PubMed/NCBI

25 

Yi M, Huo L, Koenig KB, Mittendorf EA, Meric-Bernstam F, Kuerer HM, Bedrosian I, Buzdar AU, Symmans WF, Crow JR, et al: Which threshold for ER positivity? a retrospective study based on 9639 patients. Ann Oncol. 25:1004–1011. 2014. View Article : Google Scholar : PubMed/NCBI

26 

Yaziji H, Goldstein LC, Barry TS, Werling R, Hwang H, Ellis GK, Gralow JR, Livingston RB and Gown AM: HER-2 testing in breast cancer using parallel tissue-based methods. JAMA. 291:1972–1977. 2004. View Article : Google Scholar : PubMed/NCBI

27 

Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thürlimann B and Senn HJ; Panel members, : Strategies for subtypes-dealing with the diversity of breast cancer: Highlights of the St. Gallen international expert consensus on the primary therapy of early breast cancer 2011. Ann Oncol. 22:1736–1747. 2011. View Article : Google Scholar : PubMed/NCBI

28 

Jiang R, Ma Z, Dong H, Sun S, Zeng X and Li X: Diffusion tensor imaging of breast lesions: Evaluation of apparent diffusion coefficient and fractional anisotropy and tissue cellularity. Br J Radiol. 89:201600762016. View Article : Google Scholar : PubMed/NCBI

29 

Winfield JM, Miah AB, Strauss D, Thway K, Collins DJ, deSouza NM, Leach MO, Morgan VA, Giles SL, Moskovic E, et al: Utility of multi-parametric quantitative magnetic resonance imaging for characterization and radiotherapy response assessment in Soft-tissue sarcomas and correlation with histopathology. Front Oncol. 9:2802019. View Article : Google Scholar : PubMed/NCBI

30 

Strosberg JR, Cheema A, Weber J, Han G, Coppola D and Kvols LK: Prognostic validity of a novel American Joint Committee on Cancer Staging Classification for pancreatic neuroendocrine tumors. J Clin Oncol. 29:3044–3049. 2011. View Article : Google Scholar : PubMed/NCBI

31 

Razek AA, Gaballa G, Denewer A and Nada N: Invasive ductal carcinoma: Correlation of apparent diffusion coefficient value with pathological prognostic factors. NMR Biomed. 23:619–623. 2010. View Article : Google Scholar : PubMed/NCBI

32 

Byun BH, Noh WC, Lim I, Lee SS, Cho AR, Park JA, Kim KM, Kim HA, Kim EK, Kim BI, et al: A new method for apparent diffusion coefficient measurement using sequential 18F-FDG PET and MRI: Correlation with histological grade of invasive ductal carcinoma of the breast. Ann Nucl Med. 27:720–728. 2013. View Article : Google Scholar : PubMed/NCBI

33 

Guo Y, Cai YQ, Cai ZL, Gao YG, An NY, Ma L, Mahankali S and Gao JH: Differentiation of clinically benign and malignant breast lesions using diffusion-weighted imaging. J Magn Reson Imaging. 16:172–178. 2002. View Article : Google Scholar : PubMed/NCBI

34 

Zhang L, Li J, Xiao Y, Cui H, Du G, Wang Y, Li Z, Wu T, Li X and Tian J: Identifying ultrasound and clinical features of breast cancer molecular subtypes by ensemble decision. Sci Rep. 5:110852015. View Article : Google Scholar : PubMed/NCBI

35 

Rashmi S, Kamala S, Murthy SS, Kotha S, Rao YS and Chaudhary KV: Predicting the molecular subtype of breast cancer based on mammography and ultrasound findings. Indian J Radiol Imaging. 28:354–361. 2018. View Article : Google Scholar : PubMed/NCBI

36 

Martincich L, Deantoni V, Bertotto I, Redana S, Kubatzki F, Sarotto I, Rossi V, Liotti M, Ponzone R, Aglietta M, et al: Correlations between diffusion-weighted imaging and breast cancer biomarkers. Eur Radiol. 22:1519–1528. 2012. View Article : Google Scholar : PubMed/NCBI

37 

Orel SG: MR imaging of the breast. Radiol Clin North Am. 38:899–913. 2000. View Article : Google Scholar : PubMed/NCBI

38 

Partridge SC, Nissan N, Rahbar H, Kitsch AE and Sigmund EE: Diffusion-weighted breast MRI: Clinical applications and emerging techniques. J Magn Reson Imaging. 45:337–355. 2017. View Article : Google Scholar : PubMed/NCBI

39 

Kitajima K, Yamano T, Fukushima K, Miyoshi Y and Hirota S, Kawanaka Y, Miya M, Doi H, Yamakado K and Hirota S: Correlation of the SUVmaxof FDG-PET and ADC values of diffusion-weighted MR imaging with pathologic prognostic factors in breast carcinoma. Eur J Radiol. 85:943–949. 2016. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

September 2019
Volume 18 Issue 3

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Ren, C., Zou, Y., Zhang, X., & Li, K. (2019). Diagnostic value of diffusion‑weighted imaging‑derived apparent diffusion coefficient and its association with histological prognostic factors in breast cancer. Oncology Letters, 18, 3295-3303. https://doi.org/10.3892/ol.2019.10651
MLA
Ren, C., Zou, Y., Zhang, X., Li, K."Diagnostic value of diffusion‑weighted imaging‑derived apparent diffusion coefficient and its association with histological prognostic factors in breast cancer". Oncology Letters 18.3 (2019): 3295-3303.
Chicago
Ren, C., Zou, Y., Zhang, X., Li, K."Diagnostic value of diffusion‑weighted imaging‑derived apparent diffusion coefficient and its association with histological prognostic factors in breast cancer". Oncology Letters 18, no. 3 (2019): 3295-3303. https://doi.org/10.3892/ol.2019.10651