Ursolic acid suppresses the biological function of osteosarcoma cells

  • Authors:
    • Yi Pei
    • Yueyan Zhang
    • Ke Zheng
    • Guanning Shang
    • Yuming Wang
    • Wei Wang
    • Enduo Qiu
    • Xiaojing Zhang
  • View Affiliations

  • Published online on: July 4, 2019     https://doi.org/10.3892/ol.2019.10561
  • Pages: 2628-2638
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Osteosarcoma is a highly malignant tumour that occurs in adolescents. Upregulation or the constitutive activation of epidermal growth factor receptor (EGFR) is a hallmark of osteosarcoma. To investigate the effect of ursolic acid on the biological function of osteosarcoma, MTT assay was used to detect the effect of ursolic acid on the proliferation of HOS and MG63 cells, while flow cytometry was used to analyse the effect on the cell cycle and apoptosis. Transwell and Matrigel assays were used to detect the effect of ursolic acid on cell migration and invasion, respectively. Western blot analysis and reverse transcription‑quantitative polymerase chain reaction were used to detect the effects of different concentrations of ursolic acid on EGFR signaling pathway‑related proteins, cell cycle, apoptosis and cell migration‑related proteins. After overexpression or silencing of EGFR, the effects of ursolic acid on EGFR pathway and cell biological function were subsequently detected, using the same methods. The present study identified that ursolic acid had inhibitory effects on the growth and metastatic ability of osteosarcoma cells by suppressing EGFR.

References

1 

Wang Y, Yu W, Zhu J, Wang J, Xia K, Liang C and Tao H: Anti-CD166/4-1BB chimeric antigen receptor T cell therapy for the treatment of osteosarcoma. J Exp Clin Cancer Res. 38:1682019. View Article : Google Scholar : PubMed/NCBI

2 

Gvozdenovic A, Boro A, Born W, Muff R and Fuchs B: A bispecific antibody targeting IGF-IR and EGFR has tumor and metastasis suppressive activity in an orthotopic xenograft osteosarcoma mouse model. Am J Cancer Res. 7:1435–1449. 2017.PubMed/NCBI

3 

McCleese JK, Bear MD, Kulp SK, Mazcko C, Khanna C and London CA: Met interacts with EGFR and Ron in canine osteosarcoma. Vet Comp Oncol. 11:124–139. 2013. View Article : Google Scholar : PubMed/NCBI

4 

Xi Y, Fowdur M, Liu Y, Wu H, He M and Zhao J: Differential expression and bioinformatics analysis of circRNA in osteosarcoma. Biosci Rep. 39(pii): BSR201815142019. View Article : Google Scholar : PubMed/NCBI

5 

Pahl JH, Ruslan SE, Buddingh EP, Santos SJ, Szuhai K, Serra M, Gelderblom H, Hogendoorn PC, Egeler RM, Schilham MW and Lankester AC: Anti-EGFR antibody cetuximab enhances the cytolytic activity of natural killer cells toward osteosarcoma. Clin Cancer Res. 18:432–441. 2012. View Article : Google Scholar : PubMed/NCBI

6 

Wang Q, Cai J, Wang J, Xiong C and Zhao J: MiR-143 inhibits EGFR-signaling-dependent osteosarcoma invasion. Tumour Biol. 35:12743–12748. 2014. View Article : Google Scholar : PubMed/NCBI

7 

Zou J, Lin J, Li C, Zhao R, Fan L, Yu J and Shao J: Ursolic acid in cancer treatment and metastatic chemoprevention: From synthesized derivatives to nanoformulations in preclinical studies. Curr Cancer Drug Targets. 19:245–256. 2019. View Article : Google Scholar : PubMed/NCBI

8 

Zong L, Cheng G, Liu S, Pi Z, Liu Z and Song F: Reversal of multidrug resistance in breast cancer cells by a combination of ursolic acid with doxorubicin. J Pharm Biomed Anal. 165:268–275. 2019. View Article : Google Scholar : PubMed/NCBI

9 

Sommerwerk S, Heller L, Kuhfs J and Csuk R: Urea derivates of ursolic, oleanolic and maslinic acid induce apoptosis and are selective cytotoxic for several human tumor cell lines. Eur J Med Chem. 119:1–16. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Rocha TG, Lopes SC, Cassali GD, Ferreira E, Veloso ES, Leite EA, Braga FC, Ferreira LA, Balvay D, Garofalakis A, et al: Evaluation of antitumor activity of long-circulating and ph-sensitive liposomes containing ursolic acid in animal models of breast tumor and gliosarcoma. Integr Cancer Ther. 15:512–524. 2016. View Article : Google Scholar : PubMed/NCBI

11 

Prasad S, Yadav VR, Sung B, Gupta SC, Tyagi AK and Aggarwal BB: Ursolic acid inhibits the growth of human pancreatic cancer and enhances the antitumor potential of gemcitabine in an orthotopic mouse model through suppression of the inflammatory microenvironment. Oncotarget. 7:13182–13196. 2016. View Article : Google Scholar : PubMed/NCBI

12 

Achiwa Y, Hasegawa K, Komiya T and Udagawa Y: Ursolic acid induces Bax-dependent apoptosis through the caspase-3 pathway in endometrial cancer SNG-II cells. Oncol Rep. 13:51–57. 2005.PubMed/NCBI

13 

Lin CW, Chin HK, Lee SL, Chiu CF, Chung JG, Lin ZY, Wu CY, Liu YC, Hsiao YT, Feng CH, et al: Ursolic acid induces apoptosis and autophagy in oral cancer cells. Environ Toxicol. May 7–2019.(Epub ahead of print). View Article : Google Scholar

14 

Chen CJ, Shih YL, Yeh MY, Liao NC, Chung HY, Liu KL, Lee MH, Chou PY, Hou HY, Chou JS and Chung JG: Ursolic acid induces apoptotic cell death through AIF and endo G release through a mitochondria-dependent pathway in NCI-H292 human lung cancer cells in vitro. In Vivo. 33:383–391. 2019. View Article : Google Scholar : PubMed/NCBI

15 

Hsieh YS, Chu SC, Yang SF, Chen PN, Liu YC and Lu KH: Silibinin suppresses human osteosarcoma MG-63 cell invasion by inhibiting the ERK-dependent c-Jun/AP-1 induction of MMP-2. Carcinogenesis. 28:977–987. 2007. View Article : Google Scholar : PubMed/NCBI

16 

Ren Y, Guo F, Chen A, Deng R and Wang J: Involvement of MMP-2 in adriamycin resistance dependent on ERK1/2 signal pathway in human osteosarcoma MG-63 cells. J Huazhong Univ Sci Technolog Med Sci. 32:82–86. 2012. View Article : Google Scholar : PubMed/NCBI

17 

Chen F, Zeng Y, Qi X, Chen Y, Ge Z, Jiang Z, Zhang X, Dong Y, Chen H and Yu Z: Targeted salinomycin delivery with EGFR and CD133 aptamers based dual-ligand lipid-polymer nanoparticles to both osteosarcoma cells and cancer stem cells. Nanomedicine. 14:2115–2127. 2018. View Article : Google Scholar : PubMed/NCBI

18 

Zahonero C and Sanchez-Gomez P: EGFR-dependent mechanisms in glioblastoma: Towards a better therapeutic strategy. Cell Mol Life Sci. 71:3465–3488. 2014. View Article : Google Scholar : PubMed/NCBI

19 

Kang SY, Yoon SY, Roh DH, Jeon MJ, Seo HS, Uh DK, Kwon YB, Kim HW, Han HJ, Lee HJ and Lee JH: The anti-arthritic effect of ursolic acid on zymosan-induced acute inflammation and adjuvant-induced chronic arthritis models. J Pharm Pharmacol. 60:1347–1354. 2008. View Article : Google Scholar : PubMed/NCBI

20 

Wen JH, Wei XH, Sheng XY, Zhou DQ, Peng HW, Lu YN and Zhou J: Effect of Ursolic acid on breast cancer resistance protein-mediated transport of rosuvastatin in vivo and vitro. Chin Med Sci J. 30:218–225. 2015. View Article : Google Scholar : PubMed/NCBI

21 

Dar BA, Lone AM, Shah WA and Qurishi MA: Synthesis and screening of ursolic acid-benzylidine derivatives as potential anti-cancer agents. Eur J Med Chem. 111:26–32. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Wiemann J, Heller L and Csuk R: Targeting cancer cells with oleanolic and ursolic acid derived hydroxamates. Bioorg Med Chem Lett. 26:907–909. 2016. View Article : Google Scholar : PubMed/NCBI

23 

Xiang F, Pan C, Kong Q, Wu R, Jiang J, Zhan Y, Xu J, Gu X and Kang X: Ursolic acid inhibits the proliferation of gastric cancer cells by targeting miR-133a. Oncol Res. 22:267–273. 2014. View Article : Google Scholar : PubMed/NCBI

24 

Freeman SS, Allen SW, Ganti R, Wu J, Ma J, Su X, Neale G, Dome JS, Daw NC and Khoury JD: Copy number gains in EGFR and copy number losses in PTEN are common events in osteosarcoma tumors. Cancer. 113:1453–1461. 2008. View Article : Google Scholar : PubMed/NCBI

25 

Kitz K, Windischhofer W, Leis HJ, Huber E, Kollroser M and Malle E: 15-Deoxy-Δ12,14-prostaglandin J2 induces Cox-2 expression in human osteosarcoma cells through MAPK and EGFR activation involving reactive oxygen species. Free Radic Biol Med. 50:854–865. 2011. View Article : Google Scholar : PubMed/NCBI

26 

Sevelda F, Mayr L, Kubista B, Lotsch D, van Schoonhoven S, Windhager R, Pirker C, Micksche M and Berger W: EGFR is not a major driver for osteosarcoma cell growth in vitro but contributes to starvation and chemotherapy resistance. J Exp Clin Cancer Res. 34:1342015. View Article : Google Scholar : PubMed/NCBI

27 

Tong B, Xu Y, Zhao J, Chen M, Zhong W, Xing J and Wang M: Prognostic role of circulating tumor cells in patients with EGFR-mutated or ALK-rearranged non-small cell lung cancer. Thora Cancer. 9:640–645. 2018. View Article : Google Scholar

28 

Cheng C, Deng L and Li R: The immunogenicity and anti-tumor efficacy of a rationally designed EGFR vaccine. Cell Physiol Biochem. 46:46–56. 2018. View Article : Google Scholar : PubMed/NCBI

29 

Lo HW: EGFR-targeted therapy in malignant glioma: Novel aspects and mechanisms of drug resistance. Curr Mol Pharmacol. 3:37–52. 2010. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

September 2019
Volume 18 Issue 3

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Pei, Y., Zhang, Y., Zheng, K., Shang, G., Wang, Y., Wang, W. ... Zhang, X. (2019). Ursolic acid suppresses the biological function of osteosarcoma cells. Oncology Letters, 18, 2628-2638. https://doi.org/10.3892/ol.2019.10561
MLA
Pei, Y., Zhang, Y., Zheng, K., Shang, G., Wang, Y., Wang, W., Qiu, E., Zhang, X."Ursolic acid suppresses the biological function of osteosarcoma cells". Oncology Letters 18.3 (2019): 2628-2638.
Chicago
Pei, Y., Zhang, Y., Zheng, K., Shang, G., Wang, Y., Wang, W., Qiu, E., Zhang, X."Ursolic acid suppresses the biological function of osteosarcoma cells". Oncology Letters 18, no. 3 (2019): 2628-2638. https://doi.org/10.3892/ol.2019.10561