Corosolic acid impairs human lung adenocarcinoma A549 cells proliferation by inhibiting cell migration

  • Authors:
    • Biao Li
    • Yongjie Li
    • Qiongyu Wang
    • Fan Li
    • Fu Li
  • View Affiliations

  • Published online on: April 17, 2019     https://doi.org/10.3892/ol.2019.10262
  • Pages: 5747-5753
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The present study aimed to investigate the anticancer effects of corosolic acid (CA) in the human lung adenocarcinoma A549 cell line. A549 cells were treated with increasing concentrations of CA, prior to assessing cell viability, migration rate, vascular endothelial growth factor receptor 2 (VEGFR2) kinase activity and cytoskeleton structure. In addition, in vivo imaging system was used to analyze the anticancer effects of CA in vivo. Results demonstrated that CA exhibited a low cytotoxicity with a half maximal inhibitory concentration of 65 µM. In addition, 4 µM CA efficiently inhibited A549 cell migration. Furthermore, CA inhibited VEGFR2 kinase activity and disrupted tubulin structure. Data also revealed that CA inhibited A549 cell proliferation in a xenograft mouse model. In conclusion, results from the present study suggested that CA may be used as a novel potential therapy for lung cancer.

References

1 

Jemal A, Siegel R, Xu J and Ward E: Cancer statistics, 2010. CA Cancer J Clin. 60:277–300. 2010. View Article : Google Scholar : PubMed/NCBI

2 

Jaffe N: Osteosarcoma: Review of the past, impact on the future. The American experience. Cancer Treat Res. 152:239–262. 2009. View Article : Google Scholar : PubMed/NCBI

3 

Smeland S, Bruland OS, Hjorth L, Brosjö O, Bjerkehagen B, Osterlundh G, Jakobson A, Hall KS, Monge OR, Björk O and Alvegaard TA: Results of the scandinavian sarcoma group XIV protocol for classical osteosarcoma: 63 patients with a minimum follow-up of 4 years. Acta Orthop. 82:211–216. 2011. View Article : Google Scholar : PubMed/NCBI

4 

Martin R, Carvalho-Tavares J, Ibeas E, Hernández M, Ruiz-Gutierrez V and Nieto ML: Acidic triterpenes compromise growth and survival of astrocytoma cell lines by regulating reactive oxygen species accumulation. Cancer Res. 67:3741–3751. 2007. View Article : Google Scholar : PubMed/NCBI

5 

Reyes-Zurita FJ, Rufino-Palomares EE, Lupiáñez JA and Cascante M: Maslinic acid, a natural triterpene from Olea europaea L., induces apoptosis in HT29 human colon-cancer cells via the mitochondrial apoptotic pathway. Cancer Lett. 273:44–54. 2009. View Article : Google Scholar : PubMed/NCBI

6 

Claesson-Welsh L and Welsh M: VEGFA and tumour angiogenesis. J Intern Med. 273:114–127. 2013. View Article : Google Scholar : PubMed/NCBI

7 

Lamalice L, Houle F and Huot J: Phosphorylation of Tyr1214 within VEGFR-2 triggers the recruitment of Nck and activation of Fyn leading to SAPK2/p38 activation and endothelial cell migration in response to VEGF. J Biol Chem. 281:34009–34020. 2006. View Article : Google Scholar : PubMed/NCBI

8 

Ku CY, Wang YR, Lin HY, Lu SC and Lin JY: Corosolic acid inhibits hepatocellular carcinoma cell migration by targeting the VEGFR2/Src/FAK pathway. PLoS One. 10:e01267252015. View Article : Google Scholar : PubMed/NCBI

9 

Prydz K, Vuong TT and Kolset SO: Glycosaminoglycan secretion in xyloside treated polarized human colon carcinoma Caco-2 cells. Glycoconj J. 26:1117–1124. 2009. View Article : Google Scholar : PubMed/NCBI

10 

Li T, Zhao X, Mo Z, Huang W, Yan H, Lin Z and Ye Y: Formononetin promotes cell cycle arrest via downregulation of Akt/Cyclin D1/CDK4 in human prostate cancer cells. Cell Physiol Biochem. 34:1351–1358. 2014. View Article : Google Scholar : PubMed/NCBI

11 

Jeansonne DP, Koh GY, Zhang F, Kirk-Ballard H, Wolff L, Liu D, Eilertsen K and Liu Z: Paclitaxel-induced apoptosis is blocked by camptothecin in human breast and pancreatic cancer cells. Oncol Rep. 25:1473–1480. 2011.PubMed/NCBI

12 

Lee MS, Lee CM, Cha EY, Thuong PT, Bae K, Song IS, Noh SM and Sul JY: Activation of AMP-activated protein kinase on human gastric cancer cells by apoptosis induced by corosolic acid isolated from Weigela subsessilis. Phytother Res. 24:1857–1861. 2010. View Article : Google Scholar : PubMed/NCBI

13 

Cai X, Zhang H, Tong D, Tan Z, Han D, Ji F and Hu W: Corosolic acid triggers mitochondria and caspase-dependent apoptotic cell death in osteosarcoma MG-63 cells. Phytother Res. 25:1354–1361. 2011.PubMed/NCBI

14 

Horlad H, Fujiwara Y, Takemura K, Ohnishi K, Ikeda T, Tsukamoto H, Mizuta H, Nishimura Y, Takeya M and Komohara Y: Corosolic acid impairs tumor development and lung metastasis by inhibiting the immunosuppressive activity of myeloid-derived suppressor cells. Mol Nutr Food Res. 57:1046–1054. 2013. View Article : Google Scholar : PubMed/NCBI

15 

Yu Y, Zhou L, Sun M, Zhou T, Zhong K, Wang H, Liu Y, Liu X, Xiao R, Ge J, et al: Xylocoside G reduces amyloid-β induced neurotoxicity by inhibiting NF-κB signaling pathway in neuronal cells. J Alzheimers Dis. 30:263–275. 2012. View Article : Google Scholar : PubMed/NCBI

16 

Lee HS, Park JB, Lee MS, Cha EY, Kim JY and Sul JY: Corosolic acid enhances 5-fluorouracil-induced apoptosis against SNU-620 human gastric carcinoma cells by inhibition of mammalian target of rapamycin. Mol Med Rep. 12:4782–4788. 2015. View Article : Google Scholar : PubMed/NCBI

17 

Sun M and Zhang H: Par3 and aPKC regulate BACE1 endosome-to-TGN trafficking through PACS1. Neurobiol Aging. 60:129–140. 2017. View Article : Google Scholar : PubMed/NCBI

18 

Chen TT, Luque A, Lee S, Anderson SM, Segura T and Iruela-Arispe ML: Anchorage of VEGF to the extracellular matrix conveys differential signaling responses to endothelial cells. J Cell Biol. 188:595–609. 2010. View Article : Google Scholar : PubMed/NCBI

19 

Wang H, Sun M, Yang H, Tian X, Tong Y, Zhou T, Zhang T, Fu Y, Guo X, Fan D, et al: Hypoxia-inducible factor-1α mediates up-regulation of neprilysin by histone deacetylase-1 under hypoxia condition in neuroblastoma cells. J Neurochem. 131:4–11. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Garrett TA, Van Buul JD and Burridge K: VEGF-induced Rac1 activation in endothelial cells is regulated by the guanine nucleotide exchange factor Vav2. Exp Cell Res. 313:3285–3297. 2007. View Article : Google Scholar : PubMed/NCBI

21 

Vazgiourakis VM, Zervou MI, Eliopoulos E, Sharma S, Sidiropoulos P, Franek BS, Myrthianou E, Melissourgaki M, Niewold TB, Boumpas DT and Goulielmos GN: Implication of VEGFR2 in systemic lupus erythematosus: A combined genetic and structural biological approach. Clin Exp Rheumatol. 31:97–102. 2013.PubMed/NCBI

22 

Roskoski R Jr: VEGF receptor protein-tyrosine kinases: Structure and regulation. Biochem Biophys Res Commun. 375:287–291. 2008. View Article : Google Scholar : PubMed/NCBI

23 

Takahashi T, Yamaguchi S, Chida K and Shibuya M: A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-gamma and DNA synthesis in vascular endothelial cells. EMBO J. 20:2768–2778. 2001. View Article : Google Scholar : PubMed/NCBI

24 

Meissner M, Michailidou D, Stein M, Hrgovic I, Kaufmann R and Gille J: Inhibition of Rac1 GTPase downregulates vascular endothelial growth factor receptor-2 expression by suppressing Sp1-dependent DNA binding in human endothelial cells. Exp Dermatol. 18:863–869. 2009. View Article : Google Scholar : PubMed/NCBI

25 

Clegg LW and Mac Gabhann F: Site-specific phosphorylation of VEGFR2 is mediated by receptor trafficking: Insights from a computational model. PLoS Comput Biol. 11:e10041582015. View Article : Google Scholar : PubMed/NCBI

26 

Singleton PA, Dudek SM, Chiang ET and Garcia JG: Regulation of sphingosine 1-phosphate-induced endothelial cytoskeletal rearrangement and barrier enhancement by S1P1 receptor, PI3 kinase, Tiam1/Rac1, and alpha-actinin. FASEB J. 19:1646–1656. 2005. View Article : Google Scholar : PubMed/NCBI

27 

Wittmann T, Bokoch GM and Waterman-Storer CM: Regulation of leading edge microtubule and actin dynamics downstream of Rac1. J Cell Biol. 161:845–851. 2003. View Article : Google Scholar : PubMed/NCBI

28 

Shin OH and Exton JH: Differential binding of arfaptin 2/POR1 to ADP-ribosylation factors and Rac1. Biochem Biophys Res Commun. 285:1267–1273. 2001. View Article : Google Scholar : PubMed/NCBI

29 

Li XQ, Tian W, Liu XX, Zhang K, Huo JC, Liu WJ, Li P, Xiao X, Zhao MG and Cao W: Corosolic acid inhibits the proliferation of glomerular mesangial cells and protects against diabetic renal damage. Sci Rep. 6:268542016. View Article : Google Scholar : PubMed/NCBI

30 

Liang P and MacRae TH: Molecular chaperones and the cytoskeleton. J Cell Sci. 110:1431–1440. 1997.PubMed/NCBI

31 

Frederick RL and Shaw JM: Moving mitochondria: Establishing distribution of an essential organelle. Traffic. 8:1668–1675. 2007. View Article : Google Scholar : PubMed/NCBI

32 

Woods LC, Berbusse GW and Naylor K: Microtubules are essential for mitochondrial dynamics-fission, fusion, and motility-in dictyostelium discoideum. Front Cell Dev Biol. 4:192016. View Article : Google Scholar : PubMed/NCBI

33 

Heggeness MH, Simon M and Singer SJ: Association of mitochondria with microtubules in cultured cells. Proc Natl Acad Sci USA. 75:3863–3866. 1978. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 17 Issue 6

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Li, B., Li, Y., Wang, Q., Li, F., & Li, F. (2019). Corosolic acid impairs human lung adenocarcinoma A549 cells proliferation by inhibiting cell migration. Oncology Letters, 17, 5747-5753. https://doi.org/10.3892/ol.2019.10262
MLA
Li, B., Li, Y., Wang, Q., Li, F., Li, F."Corosolic acid impairs human lung adenocarcinoma A549 cells proliferation by inhibiting cell migration". Oncology Letters 17.6 (2019): 5747-5753.
Chicago
Li, B., Li, Y., Wang, Q., Li, F., Li, F."Corosolic acid impairs human lung adenocarcinoma A549 cells proliferation by inhibiting cell migration". Oncology Letters 17, no. 6 (2019): 5747-5753. https://doi.org/10.3892/ol.2019.10262