Open Access

ceRNA network analysis reveals prognostic markers for glioblastoma

  • Authors:
    • Hao Wang
    • Heying Zhang
    • Juan Zeng
    • Yonggang Tan
  • View Affiliations

  • Published online on: April 18, 2019     https://doi.org/10.3892/ol.2019.10275
  • Pages: 5545-5557
  • Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Glioblastoma (GBM) is a common aggressive cancer that originates in the brain, which has a poor prognosis. It is therefore crucial to understand its underlying genetic mechanisms in order to develop novel therapies. The present study aimed to identify some prognostic markers and candidate therapeutic targets for GBM. To do so, RNA expression levels in tumor and normal tissues were compared by microarray analysis. The differential expression of RNAs in normal and cancer tissues was analyzed, and a competing endogenous RNA (ceRNA) network was constructed for pathway analysis. The results revealed that RNA expression patterns were considerably different between normal and tumor samples. A ceRNA network was therefore constructed with the differentially expressed RNAs. ETS variant 5 (ETV5), myocyte enhancer factor 2C and ETS transcription factor (ELK4) were considerably enriched in the significant pathway of ‘transcriptional misregulation in cancer’. In addition, prognostic analysis demonstrated that ETV5 and ELK4 expression levels were associated with the survival time of patients with GBM. These results suggested that ELK4 and ETV5 may be prognostic markers for GBM, and that their microRNAs may be candidate therapeutic targets.

References

1 

Salmena L, Poliseno L, Tay Y, Kats L and Pandolfi Pier P: A ceRNA hypothesis: The rosetta stone of a hidden RNA language? Cell. 146:353–358. 2011. View Article : Google Scholar : PubMed/NCBI

2 

Tay Y, Kats L, Salmena L, Weiss D, Tan SM, Ala U, Karreth F, Poliseno L, Provero P, Di Cunto F, et al: Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell. 147:344–357. 2011. View Article : Google Scholar : PubMed/NCBI

3 

Young RM, Jamshidi A, Davis G and Sherman JH: Current trends in the surgical management and treatment of adult glioblastoma. Ann Transl Med. 3:1212015.PubMed/NCBI

4 

Gallego O: Nonsurgical treatment of recurrent glioblastoma. Curr Oncol. 22:e273–E281. 2015. View Article : Google Scholar : PubMed/NCBI

5 

Condon DM and Revelle W: The international cognitive ability resource: Development and initial validation of a public-domain measure. Intelligence. 43:52–64. 2014. View Article : Google Scholar

6 

Parrish RS and Spencer HJ III: Effect of normalization on significance testing for oligonucleotide microarrays. J Biopharm Stat. 14:575–589. 2004. View Article : Google Scholar : PubMed/NCBI

7 

Smyth GK: Limma: Linear models for microarray data. Gentleman R, Carey V, Dudoit S, Irizarry R and Huber W: Bioinformatics and Computational Biology Solutions Using R and Bioconductor. Springer; New York, NY: pp. 397–420. 2005, View Article : Google Scholar

8 

Wang L, Cao C, Ma Q, Zeng Q, Wang H, Cheng Z, Zhu G, Qi J, Ma H, Nian H and Wang Y: RNA-seq analyses of multiple meristems of soybean: Novel and alternative transcripts, evolutionary and functional implications. BMC Plant Biol. 14:1692014. View Article : Google Scholar : PubMed/NCBI

9 

Huang da W, Sherman BT and Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 4:44–57. 2009. View Article : Google Scholar : PubMed/NCBI

10 

Liao Q, Liu C, Yuan X, Kang S, Miao R, Xiao H, Zhao G, Luo H, Bu D, Zhao H, et al: Large-scale prediction of long non-coding RNA functions in a coding-non-coding gene co-expression network. Nucleic Acids Res. 39:3864–3878. 2011. View Article : Google Scholar : PubMed/NCBI

11 

Langfelder P and Horvath S: WGCNA: An R package for weighted correlation network analysis. Bmc Bioinformatics. 9:5592008. View Article : Google Scholar : PubMed/NCBI

12 

Jeggari A, Marks DS and Larsson E: miRcode: A map of putative microRNA target sites in the long non-coding transcriptome. Bioinformatics. 28:2062–2063. 2012. View Article : Google Scholar : PubMed/NCBI

13 

Yang JH, Li JH, Shao P, Zhou H, Chen YQ and Qu LH: starBase: A database for exploring microRNA-mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data. Nucleic Acids Res 39 (Database issue). D202–D209. 2011. View Article : Google Scholar

14 

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13:2498–2504. 2003. View Article : Google Scholar : PubMed/NCBI

15 

John B, Enright AJ, Aravin A, Tuschl T, Sander C and Marks DS: Human MicroRNA targets. PLoS Biol. 2:e3632004. View Article : Google Scholar : PubMed/NCBI

16 

Fromm B, Billipp T, Peck LE, Johansen M, Tarver JE, King BL, Newcomb JM, Sempere LF, Flatmark K, Hovig E and Peterson KJ: A uniform system for the annotation of vertebrate microRNA genes and the evolution of the human microRNAome. Annu Rev Genet. 49:213–242. 2015. View Article : Google Scholar : PubMed/NCBI

17 

Gao KM, Chen XC, Zhang JX, Wang Y, Yan W and You YP: A pseudogene-signature in glioma predicts survival. J Exp Clin Cancer Res. 34:232015. View Article : Google Scholar : PubMed/NCBI

18 

Ramos AR, Elong Edimo W and Erneux C: Phosphoinositide 5-phosphatase activities control cell motility in glioblastoma: Two phosphoinositides PI(4,5)P2 and PI(3,4)P2 are involved. Adv Biol Regul. 67:40–48. 2018. View Article : Google Scholar : PubMed/NCBI

19 

Jhanwar-Uniyal M, Gillick JL, Neil J, Tobias M, Thwing ZE and Murali R: Distinct signaling mechanisms of mTORC1 and mTORC2 in glioblastoma multiforme: A tale of two complexes. Adv Biol Regul. 57:64–74. 2015. View Article : Google Scholar : PubMed/NCBI

20 

Lewis BP, Burge CB and Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 120:15–20. 2005. View Article : Google Scholar : PubMed/NCBI

21 

Helgeson BE, Tomlins SA, Shah N, Laxman B, Cao Q, Prensner JR, Cao X, Singla N, Montie JE, Varambally S, et al: Characterization of TMPRSS2:ETV5 and SLC45A3:ETV5 gene fusions in prostate cancer. Cancer Res. 68:73–80. 2008. View Article : Google Scholar : PubMed/NCBI

22 

Monge M, Colas E, Doll A, Gonzalez M, Gil-Moreno A, Planaguma J, Quiles M, Arbos MA, Garcia A, Castellvi J, et al: ERM/ETV5 up-regulation plays a role during myometrial infiltration through matrix metalloproteinase-2 activation in endometrial cancer. Cancer Res. 67:6753–6759. 2007. View Article : Google Scholar : PubMed/NCBI

23 

Breunig JJ, Levy R, Antonuk CD, Molina J, Dutra-Clarke M, Park H, Akhtar AA, Kim GB, Town T, Hu X, et al: Ets factors regulate neural stem cell depletion and gliogenesis in ras pathway glioma. Cell Rep. 17:34072016. View Article : Google Scholar : PubMed/NCBI

24 

Li X, Newbern JM, Wu Y, Morgan-Smith M, Zhong J, Charron J and Snider WD: MEK is a key regulator of gliogenesis in the developing brain. Neuron. 75:1035–1050. 2012. View Article : Google Scholar : PubMed/NCBI

25 

Seth A and Watson DK: ETS transcription factors and their emerging roles in human cancer. Eur J Cancer. 41:2462–2478. 2005. View Article : Google Scholar : PubMed/NCBI

26 

Oikawa T: ETS transcription factors: Possible targets for cancer therapy. Cancer Sci. 95:626–633. 2004. View Article : Google Scholar : PubMed/NCBI

27 

Gasi Tandefelt D, Boormans J, Hermans K and Trapman J: ETS fusion genes in prostate cancer. Endocr Relat Cancer. 21:R143–R152. 2014. View Article : Google Scholar : PubMed/NCBI

28 

Shaikhibrahim Z, Braun M, Nikolov P, Boehm D, Scheble V, Menon R, Fend F, Kristiansen G, Perner S and Wernert N: Rearrangement of the ETS genes ETV-1, ETV-4, ETV-5, and ELK-4 is a clonal event during prostate cancer progression. Human Pathol. 43:1910–1916. 2012. View Article : Google Scholar

29 

Rickman DS, Pflueger D, Moss B, VanDoren VE, Chen CX, de la Taille A, Kuefer R, Tewari AK, Setlur SR, Demichelis F and Rubin MA: SLC45A3-ELK4 is a novel and frequent erythroblast transformation-specific fusion transcript in prostate cancer. Cancer Res. 69:2734–2748. 2009. View Article : Google Scholar : PubMed/NCBI

30 

Day BW, Stringer BW, Spanevello MD, Charmsaz S, Jamieson PR, Ensbey KS, Carter JC, Cox JM, Ellis VJ, Brown CL, et al: ELK4 neutralization sensitizes glioblastoma to apoptosis through downregulation of the anti-apoptotic protein Mcl-1. Neuro Oncol. 13:1202–1212. 2011. View Article : Google Scholar : PubMed/NCBI

31 

Wang YN, Chen ZH and Chen WC: Novel circulating microRNAs expression profile in colon cancer. A pilot study Eur J Med Res. 22(51)2017.PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 17 Issue 6

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Wang, H., Zhang, H., Zeng, J., & Tan, Y. (2019). ceRNA network analysis reveals prognostic markers for glioblastoma. Oncology Letters, 17, 5545-5557. https://doi.org/10.3892/ol.2019.10275
MLA
Wang, H., Zhang, H., Zeng, J., Tan, Y."ceRNA network analysis reveals prognostic markers for glioblastoma". Oncology Letters 17.6 (2019): 5545-5557.
Chicago
Wang, H., Zhang, H., Zeng, J., Tan, Y."ceRNA network analysis reveals prognostic markers for glioblastoma". Oncology Letters 17, no. 6 (2019): 5545-5557. https://doi.org/10.3892/ol.2019.10275