Open Access

Validity of an NGS‑based multiple gene panel in identifying actionable mutations for patients with NSCLC in a Chinese hospital

  • Authors:
    • Wei Cao
    • Chenghai Yan
    • Hailong Wang
    • Tom Tang
    • Haifeng Wang
    • Dujuan Liu
  • View Affiliations

  • Published online on: April 18, 2019     https://doi.org/10.3892/ol.2019.10265
  • Pages: 5425-5434
  • Copyright: © Cao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Non‑small cell lung cancer (NSCLC) is the most common type of lung cancer. A number of targeted therapies have been approved for clinical use or are in clinical trials. Next generation sequencing (NGS) is widely applied in the identification of actionable genomic alterations and enables personalized cancer therapy for patients. Several multiple‑gene panels are available in China for the practice of precision medicine‑based cancer therapy. However, the efficiency of these panels requires evaluation. The current study investigated 23 NSCLC samples using a custom designed panel of complete coding regions of ~180 cancer driver genes (FD‑180) and whole exome sequencing for control samples, obtained from white blood cell samples. The results obtained suggested that actionable mutations with available targeted therapeutic options were identified in 69.6% of cases, including 60.9% of therapeutic targets recommended by the National Comprehensive Cancer Network guidelines. Furthermore, 8.7% of patients had a gene mutation that potentially qualified them for clinical trials or associated off‑label therapies. As such, the results obtained in the current study demonstrated the reliability of the targeted NGS panel and its potential use for identifying actionable gene alterations and designing personalized therapies for patients with NSCLC.

References

1 

Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China, 2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Li SD, Ma M, Li H, Waluszko A, Sidorenko T, Schadt EE, Zhang DY, Chen R and Ye F: Cancer gene profiling in non-small cell lung cancers reveals activating mutations in JAK2 and JAK3 with therapeutic implications. Genome Med. 9:892017. View Article : Google Scholar : PubMed/NCBI

3 

Díaz-Serrano A, Gella P, Jiménez E, Zugazagoitia J and Paz-Ares Rodríguez L: Targeting egfr in lung cancer: Current standards and developments. Drugs. 78:893–911. 2018. View Article : Google Scholar : PubMed/NCBI

4 

Ritter DI, Roychowdhury S, Roy A, Rao S, Landrum MJ, Sonkin D, Shekar M, Davis CF, Hart RK, Micheel C, et al: Somatic cancer variant curation and harmonization through consensus minimum variant level data. Genome Med. 8:1172016. View Article : Google Scholar : PubMed/NCBI

5 

Hensing T, Chawla A, Batra R and Salgia R: A personalized treatment for lung cancer: Molecular pathways, targeted therapies, and genomic characterization. Adv Exp Med Biol. 799:85–117. 2014. View Article : Google Scholar : PubMed/NCBI

6 

Vendrell JA, Taviaux S, Béganton B, Godreuil S, Audran P, Grand D, Clermont E, Serre I, Szablewski V, Coopman P, et al: Detection of known and novel ALK fusion transcripts in lung cancer patients using next-generation sequencing approaches. Sci Rep. 7:125102017. View Article : Google Scholar : PubMed/NCBI

7 

Saarenheimo J, Eigeliene N, Andersen H, Tiirola M and Jekunen A: The value of liquid biopsies for guiding therapy decisions in non-small cell lung cancer. Front Oncol. 9:1292019. View Article : Google Scholar : PubMed/NCBI

8 

Cheng Y, Wang S, Han L, Liu P, Li H, Ren X, Yu J and Hao X: Concurrent somatic mutations in driver genes were significantly correlated with lymph node metastasis and pathological types in solid tumors. Oncotarget. 8:68746–68757. 2017. View Article : Google Scholar : PubMed/NCBI

9 

Ke EE and Wu YL: Afatinib in the first-line treatment of epidermal-growth-factor-receptor mutation-positive non-small cell lung cancer: A review of the clinical evidence. Ther Adv Respir Dis. 10:256–264. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Wang S, Cang S and Liu D: Third-generation inhibitors targeting EGFR T790M mutation in advanced non-small cell lung cancer. J Hematol Oncol. 9:342016. View Article : Google Scholar : PubMed/NCBI

11 

Zhang YC, Zhou Q and Wu YL: Efficacy of crizotinib in first-line treatment of adults with ALK-positive advanced NSCLC. Expert Opin Pharmacother. 17:1693–1701. 2016. View Article : Google Scholar : PubMed/NCBI

12 

Gainor JF and Shaw AT: Novel targets in non-small cell lung cancer: ROS1 and RET fusions. Oncologist. 18:865–875. 2013. View Article : Google Scholar : PubMed/NCBI

13 

Illei PB, Belchis D, Tseng LH, Nguyen D, De Marchi F, Haley L, Riel S, Beierl K, Zheng G, Brahmer JR, et al: Clinical mutational profiling of 1006 lung cancers by next generation sequencing. Oncotarget. 8:96684–96696. 2017. View Article : Google Scholar : PubMed/NCBI

14 

Allegretti M, Fabi A, Buglioni S, Martayan A, Conti L, Pescarmona E, Ciliberto G and Giacomini P: Tearing down the walls: FDA approves next generation sequencing (NGS) assays for actionable cancer genomic aberrations. J Exp Clin Cancer Res. 37:472018. View Article : Google Scholar : PubMed/NCBI

15 

Zhang YC, Zhou Q and Wu YL: The emerging roles of NGS-based liquid biopsy in non-small cell lung cancer. J Hematol Oncol. 10:1672017. View Article : Google Scholar : PubMed/NCBI

16 

Miranda E, Destro A, Malesci A, Balladore E, Bianchi P, Baryshnikova E, Franchi G, Morenghi E, Laghi L, Gennari L and Roncalli M: Genetic and epigenetic changes in primary metastatic and nonmetastatic colorectal cancer. Br J Cancer. 95:1101–1107. 2006. View Article : Google Scholar : PubMed/NCBI

17 

Malapelle U, Mayo de-Las-Casas C, Rocco D, Garzon M, Pisapia P, Jordana-Ariza N, Russo M, Sgariglia R, De Luca C, Pepe F, et al: Development of a gene panel for next-generation sequencing of clinically relevant mutations in cell-free DNA from cancer patients. Br J Cancer. 116:802–810. 2017. View Article : Google Scholar : PubMed/NCBI

18 

Li H and Durbin R: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 25:1754–1760. 2009. View Article : Google Scholar : PubMed/NCBI

19 

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M and DePristo MA: The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20:1297–1303. 2010. View Article : Google Scholar : PubMed/NCBI

20 

Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C, Gabriel S, Meyerson M, Lander ES and Getz G: Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol. 31:213–219. 2013. View Article : Google Scholar : PubMed/NCBI

21 

Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM and Sirotkin K: dbSNP: The NCBI database of genetic variation. Nucleic Acids Res. 29:308–311. 2001. View Article : Google Scholar : PubMed/NCBI

22 

Tassios PT and Moran-Gilad J: Bacterial next generation sequencing (NGS) made easy. Clin Microbiol Infect. 24:332–334. 2018. View Article : Google Scholar : PubMed/NCBI

23 

Cabanillas R, Diñeiro M, Castillo D, Pruneda PC, Penas C, Cifuentes GA, de Vicente Á, Durán NS, Álvarez R, Ordóñez GR and Cadiñanos J: A novel molecular diagnostics platform for somatic and germline precision oncology. Mol Genet Genomic Med. 5:336–359. 2017. View Article : Google Scholar : PubMed/NCBI

24 

Forde PM and Ettinger DS: Managing acquired resistance in EGFR-mutated non-small cell lung cancer. Clin Adv Hematol Oncol. 13:528–532. 2015.PubMed/NCBI

25 

Zhao D, Chen X, Qin N, Su D, Zhou L, Zhang Q, Li X, Zhang X, Jin M and Wang J: The prognostic role of EGFR-TKIs for patients with advanced non-small cell lung cancer. Sci Rep. 7:403742017. View Article : Google Scholar : PubMed/NCBI

26 

Kucharczuk CR, Ganetsky A and Vozniak JM: Drug-drug interactions, safety, and pharmacokinetics of EGFR tyrosine kinase inhibitors for the treatment of non-small cell lung cancer. J Adv Pract Oncol. 9:189–200. 2018.PubMed/NCBI

27 

Ramalingam SS, Yang JC, Lee CK, Kurata T, Kim DW, John T, Nogami N, Ohe Y, Mann H, Rukazenkov Y, et al: Osimertinib as first-line treatment of EGFR mutation-positive advanced non-small-cell lung cancer. J Clin Oncol. 36:841–849. 2018. View Article : Google Scholar : PubMed/NCBI

28 

Sequist LV, Waltman BA, Dias-Santagata D, Digumarthy S, Turke AB, Fidias P, Bergethon K, Shaw AT, Gettinger S, Cosper AK, et al: Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med. 3:75ra262011. View Article : Google Scholar : PubMed/NCBI

29 

Ludovini V, Bianconi F, Pistola L, Chiari R, Minotti V, Colella R, Giuffrida D, Tofanetti FR, Siggillino A, Flacco A, et al: Phosphoinositide-3-kinase catalytic alpha and KRAS mutations are important predictors of resistance to therapy with epidermal growth factor receptor tyrosine kinase inhibitors in patients with advanced non-small cell lung cancer. J Thorac Oncol. 6:707–715. 2011. View Article : Google Scholar : PubMed/NCBI

30 

Li S, Li L, Zhu Y, Huang C, Qin Y, Liu H, Ren-Heidenreich L, Shi B, Ren H, Chu X, et al: Coexistence of EGFR with KRAS, or BRAF, or PIK3CA somatic mutations in lung cancer: a comprehensive mutation profiling from 5125 Chinese cohorts. Br J Cancer. 110:2812–2820. 2014. View Article : Google Scholar : PubMed/NCBI

31 

Brose MS, Volpe P, Feldman M, Kumar M, Rishi I, Gerrero R, Einhorn E, Herlyn M, Minna J, Nicholson A, et al: BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res. 62:6997–7000. 2002.PubMed/NCBI

32 

Cheng DT, Prasad M, Chekaluk Y, Benayed R, Sadowska J, Zehir A, Syed A, Wang YE, Somar J, Li Y, et al: Comprehensive detection of germline variants by MSK-IMPACT, a clinical diagnostic platform for solid tumor molecular oncology and concurrent cancer predisposition testing. BMC Med Genomics. 10:332017. View Article : Google Scholar : PubMed/NCBI

33 

Wheler JJ, Moulder SL, Naing A, Janku F, Piha-Paul SA, Falchook GS, Zinner R, Tsimberidou AM, Fu S, Hong DS, et al: Anastrozole and everolimus in advanced gynecologic and breast malignancies: Activity and molecular alterations in the PI3K/AKT/mTOR pathway. Oncotarget. 5:3029–3038. 2014. View Article : Google Scholar : PubMed/NCBI

34 

Moroney J, Fu S, Moulder S, Falchook G, Helgason T, Levenback C, Hong D, Naing A, Wheler J and Kurzrock R: Phase I study of the antiangiogenic antibody bevacizumab and the mTOR/hypoxia-inducible factor inhibitor temsirolimus combined with liposomal doxorubicin: Tolerance and biological activity. Clin Cancer Res. 18:5796–5805. 2012. View Article : Google Scholar : PubMed/NCBI

35 

Mackay HJ, Eisenhauer EA, Kamel-Reid S, Tsao M, Clarke B, Karakasis K, Werner HM, Trovik J, Akslen LA, Salvesen HB, et al: Molecular determinants of outcome with mammalian target of rapamycin inhibition in endometrial cancer. Cancer. 120:603–610. 2014. View Article : Google Scholar : PubMed/NCBI

36 

Lovly C, Horn L and Pao W: PIK3CA c.1633G>A (E545K) mutation in non-small cell lung cancer. my cancer genome. simplehttps://www.mycancergenome.org/content/disease/lung-cancer/pik3ca/8/(Updated January 13). 2017

37 

Fiala O, Pesek M, Finek J, Benesova L, Belsanova B and Minarik M: The dominant role of G12C over other KRAS mutation types in the negative prediction of efficacy of epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Cancer Genet. 206:26–31. 2013. View Article : Google Scholar : PubMed/NCBI

38 

Riely GJ and Ladanyi M: KRAS mutations: An old oncogene becomes a new predictive biomarker. J Mol Diagn. 10:493–495. 2008. View Article : Google Scholar : PubMed/NCBI

39 

Riely GJ, Marks J and Pao W: KRAS mutations in non-small cell lung cancer. Proc Am Thorac Soc. 6:201–205. 2009. View Article : Google Scholar : PubMed/NCBI

40 

Bhattacharya S, Socinski MA and Burns TF: KRAS mutant lung cancer: Progress thus far on an elusive therapeutic target. Clin Transl Med. 4:352015. View Article : Google Scholar : PubMed/NCBI

41 

Jänne PA, Shaw AT, Pereira JR, Jeannin G, Vansteenkiste J, Barrios C, Franke FA, Grinsted L, Zazulina V, Smith P, et al: Selumetinib plus docetaxel for KRAS-mutant advanced non-small-cell lung cancer: A randomised, multicentre, placebo-controlled, phase 2 study. Lancet Oncol. 14:38–47. 2013. View Article : Google Scholar : PubMed/NCBI

42 

Carretero J, Shimamura T, Rikova K, Jackson AL, Wilkerson MD, Borgman CL, Buttarazzi MS, Sanofsky BA, McNamara KL, Brandstetter KA, et al: Integrative genomic and proteomic analyses identify targets for Lkb1-deficient metastatic lung tumors. Cancer Cell. 17:547–559. 2010. View Article : Google Scholar : PubMed/NCBI

43 

Chen Z, Cheng K, Walton Z, Wang Y, Ebi H, Shimamura T, Liu Y, Tupper T, Ouyang J, Li J, et al: A murine lung cancer co-clinical trial identifies genetic modifiers of therapeutic response. Nature. 483:613–617. 2012. View Article : Google Scholar : PubMed/NCBI

44 

Infante JR, Fecher LA, Falchook GS, Nallapareddy S, Gordon MS, Becerra C, DeMarini DJ, Cox DS, Xu Y, Morris SR, et al: Safety, pharmacokinetic, pharmacodynamic, and efficacy data for the oral MEK inhibitor trametinib: a phase 1 dose-escalation trial. Lancet Oncol. 13:773–781. 2012. View Article : Google Scholar : PubMed/NCBI

45 

Xing X, Cai W, Shi H, Wang Y, Li M, Jiao J and Chen M: The prognostic value of CDKN2A hypermethylation in colorectal cancer: A meta-analysis. Br J Cancer. 108:2542–2548. 2013. View Article : Google Scholar : PubMed/NCBI

46 

Padhi SS, Roy S, Kar M, Saha A, Roy S, Adhya A, Baisakh M and Banerjee B: Role of CDKN2A/p16 expression in the prognostication of oral squamous cell carcinoma. Oral Oncol. 73:27–35. 2017. View Article : Google Scholar : PubMed/NCBI

47 

Kim N, Song M, Kim S, Seo Y, Kim Y and Yoon S: Differential regulation and synthetic lethality of exclusive RB1 and CDKN2A mutations in lung cancer. Int J Oncol. 48:367–375. 2016. View Article : Google Scholar : PubMed/NCBI

48 

Gopalan PK, Pinder MC, Chiappori A, Ivey AM, Villegas AG and Kaye FJ: A phase II clinical trial of the CDK4/6 inhibitor palbociclib (PD0332991) in previously treated, advanced non-small cell lung cancer (NSCLC) patients with inactivated CDKN2A. J Clin Oncol. 32:80772014. View Article : Google Scholar

49 

Logan JE, Mostofizadeh N, Desai AJ, VON Euw E, Conklin D, Konkankit V, Hamidi H, Eckardt M, Anderson L, Chen HW, et al: PD-0332991, a potent and selective inhibitor of cyclin-dependent kinase 4/6, demonstrates inhibition of proliferation in renal cell carcinoma at nanomolar concentrations and molecular markers predict for sensitivity. Anticancer Res. 33:2997–3004. 2013.PubMed/NCBI

50 

Young RJ, Waldeck K, Martin C, Foo JH, Cameron DP, Kirby L, Do H, Mitchell C, Cullinane C, Liu W, et al: Loss of CDKN2A expression is a frequent event in primary invasive melanoma and correlates with sensitivity to the CDK4/6 inhibitor PD0332991 in melanoma cell lines. Pigment Cell Melanoma Res. 27:590–600. 2014. View Article : Google Scholar : PubMed/NCBI

51 

Konecny GE, Winterhoff B, Kolarova T, Qi J, Manivong K, Dering J, Yang G, Chalukya M, Wang HJ, Anderson L, et al: Expression of p16 and retinoblastoma determines response to CDK4/6 inhibition in ovarian cancer. Clin Cancer Res. 17:1591–1602. 2011. View Article : Google Scholar : PubMed/NCBI

52 

Finn RS, Dering J, Conklin D, Kalous O, Cohen DJ, Desai AJ, Ginther C, Atefi M, Chen I, Fowst C, et al: PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res. 11:R772009. View Article : Google Scholar : PubMed/NCBI

53 

Kanwal M, Ding XJ and Cao Y: Familial risk for lung cancer. Oncol Lett. 13:535–542. 2017. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 17 Issue 6

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Cao, W., Yan, C., Wang, H., Tang, T., Wang, H., & Liu, D. (2019). Validity of an NGS‑based multiple gene panel in identifying actionable mutations for patients with NSCLC in a Chinese hospital. Oncology Letters, 17, 5425-5434. https://doi.org/10.3892/ol.2019.10265
MLA
Cao, W., Yan, C., Wang, H., Tang, T., Wang, H., Liu, D."Validity of an NGS‑based multiple gene panel in identifying actionable mutations for patients with NSCLC in a Chinese hospital". Oncology Letters 17.6 (2019): 5425-5434.
Chicago
Cao, W., Yan, C., Wang, H., Tang, T., Wang, H., Liu, D."Validity of an NGS‑based multiple gene panel in identifying actionable mutations for patients with NSCLC in a Chinese hospital". Oncology Letters 17, no. 6 (2019): 5425-5434. https://doi.org/10.3892/ol.2019.10265