Open Access

Integrating radiosensitive genes improves prediction of radiosensitivity or radioresistance in patients with oesophageal cancer

  • Authors:
    • Qiuning Zhang
    • Zhitong Bing
    • Jinhui Tian
    • Xiaohu Wang
    • Ruifeng Liu
    • Yi Li
    • Yarong Kong
    • Yan Yang
  • View Affiliations

  • Published online on: April 10, 2019     https://doi.org/10.3892/ol.2019.10240
  • Pages: 5377-5388
  • Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Oesophageal cancer is a serious disease worldwide. In China, the incidence of esophageal cancer was reported to be ~478,000 in 2015. In the same year, the incidence of esophageal cancer in the United States was ~16,910. Radiotherapy serves as an important tool in the treatment of oesophageal cancer, and although radiation therapy has progressed over time, the prognosis of the majority of patients with oesophageal cancer remains poor. Additionally, the sensitivity of patients with oesophageal cancer to radiotherapy and chemotherapy is not yet clear. Although there are a number of studies on the radiosensitivity of oesophageal cancer cell lines, the vastly different results from different cell lines make them unreliable to use as a guide in clinical practice. Therefore, a common radiosensitive gene signature may provide more reliable results, and using different combinations of common gene signatures to predict the outcome of patients with oesophageal cancer may generate a unique gene signature in oesophageal cancer. In the present study, the radiosensitive index and prognostic index were calculated to predict clinical outcomes. The prognostic index of a 41‑gene signature combination is the largest combination of gene signatures used for classifying oesophageal cancer patients into radiosensitive (RS) and radioresistance (RR) groups, to the best of our knowledge, and this gene signature was more effective in patients classified as having Stage III oesophageal cancer. Furthermore, four genes (carbonyl reductase 1, serine/threonine kinase PAK2, ras‑related protein Rab 13 and twinfilin‑1) may be sufficient to classify patients into either RS or RR. Subsequent to gene enrichment analysis, the cell communication pathway was significantly different between RS and RR groups in oesophageal cancer. These results may provide useful insights in improving radiotherapy strategies in clinical decisions.

References

1 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2016. CA Cancer J Clin. 66:7–30. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China, 2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Ng J and Lee P: The role of radiotherapy in localized esophageal and gastric cancer. Hematol Oncol Clin North Am. 31:453–468. 2017. View Article : Google Scholar : PubMed/NCBI

4 

Ravi S, Khaldoun A, Meredith KL, Biagioli MC, Chuong MD, Cruz A and Hoffe SE: Radiation therapy and esophageal cancer. Cancer Control. 20:97–110. 2013. View Article : Google Scholar : PubMed/NCBI

5 

Altorki N and Harrison S: What is the role of neoadjuvant chemotherapy, radiation, and adjuvant treatment in resectable esophageal cancer? Ann Cardiothorac Surg. 6:167–174. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Scott JG, Berglund A, Schell MJ, Mihaylov I, Fulp WJ, Yue B, Welsh E, Caudell JJ, Ahmed K, Strom TS, et al: A genome-based model for adjusting radiotherapy dose (GARD): A retrospective, cohort-based study. Lancet Oncol. 18:202–211. 2017. View Article : Google Scholar : PubMed/NCBI

7 

Begg AC: Predicting response to radiotherapy: Evolutions and revolutions. Int J Radiat Biol. 85:825–836. 2009. View Article : Google Scholar : PubMed/NCBI

8 

Amundson SA, Do KT, Vinikoor LC, Lee RA, Koch-Paiz CA, Ahn J, Reimers M, Chen Y, Scudiero DA, Weinstein JN, et al: Integrating global gene expression and radiation survival parameters across the 60 cell lines of the national cancer institute anticancer drug screen. Cancer Res. 68:415–424. 2008. View Article : Google Scholar : PubMed/NCBI

9 

Lynam-Lennon N, Reynolds JV, Marignol L, Sheils OM, Pidgeon GP and Maher SG: MicroRNA-31 modulates tumour sensitivity to radiation in oesophageal adenocarcinoma. J Mol Med (Berl). 90:1449–1458. 2012. View Article : Google Scholar : PubMed/NCBI

10 

Chen GZ, Zhu HC, Dai WS, Zeng XN, Luo JH and Sun XC: The mechanisms of radioresistance in esophageal squamous cell carcinoma and current strategies in radiosensitivity. J Thorac Dis. 9:849–859. 2017. View Article : Google Scholar : PubMed/NCBI

11 

Fukuda K, Sakakura C, Miyagawa K, Kuriu Y, Kin S, Nakase Y, Hagiwara A, Mitsufuji S, Okazaki Y, Hayashizaki Y and Yamagishi H: Differential gene expression profiles of radioresistant oesophageal cancer cell lines established by continuous fractionated irradiation. Br J Cancer. 91:1543–1550. 2004. View Article : Google Scholar : PubMed/NCBI

12 

Eschrich S, Zhang H, Zhao H, Boulware D, Lee JH, Bloom G and Torres-Roca JF: Systems biology modeling of the radiation sensitivity network: A biomarker discovery platform. Int J Radiat Oncol Biol Phys. 75:497–505. 2009. View Article : Google Scholar : PubMed/NCBI

13 

Kim HS, Kim SC, Kim SJ, Park CH, Jeung HC, Kim YB, Ahn JB, Chung HC and Rha SY: Identification of a radiosensitivity signature using integrative metaanalysis of published microarray data for NCI-60 cancer cells. BMC Genomics. 13:3482012. View Article : Google Scholar : PubMed/NCBI

14 

Eschrich SA, Fulp WJ, Pawitan Y, Foekens JA, Smid M, Martens JW, Echevarria M, Kamath V, Lee JH, Harris EE, et al: Validation of a radiosensitivity molecular signature in breast cancer. Clin Cancer Res. 18:5134–5143. 2012. View Article : Google Scholar : PubMed/NCBI

15 

Torres-Roca JF, Erho N, Vergara I, Davicioni E, Jenkins RB, Den RB, Dicker AP and Eschrich SA: A molecular signature of radiosensitivity (rsi) is an rt-specific biomarker in prostate cancer. Int J Radiat Oncol Biol Phy. 90 (Suppl):S1572014. View Article : Google Scholar

16 

Creelan B, Eschrich SA, Fulp WJ and Torres-Roca JF: A gene expression platform to predict benefit from adjuvant external beam radiation in resected non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 90 (Suppl):S76–S77. 2014. View Article : Google Scholar

17 

Torres-Roca JF, Fulp WJ, Caudell JJ, Servant N, Bollet MA, van de Vijver M, Naghavi AO, Harris EE and Eschrich SA: Integration of a radiosensitivity molecular signature into the assessment of local recurrence risk in breast cancer. Int J Radiat Oncol Biol Phys. 93:631–638. 2015. View Article : Google Scholar : PubMed/NCBI

18 

Strom T, Hoffe SE, Fulp W, Frakes J, Coppola D, Springett GM, Malafa MP, Harris CL, Eschrich SA, Torres-Roca JF and Shridhar R: Radiosensitivity index predicts for survival with adjuvant radiation in resectable pancreatic cancer. Radiother Oncol. 117:159–164. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Ahmed KA, Fulp WJ, Berglund AE, Hoffe SE, Dilling TJ, Eschrich SA, Shridhar R and Torres-Roca JF: Differences between colon cancer primaries and metastases using a molecular assay for tumor radiation sensitivity suggest implications for potential oligometastatic SBRT patient selection. Int J Radiat Oncol Biol Phys. 92:837–842. 2015. View Article : Google Scholar : PubMed/NCBI

20 

Ahmed KA, Chinnaiyan P, Fulp WJ, Eschrich S, Torresroca JF and Caudell JJ: The radiosensitivity index predicts for overall survival in glioblastoma. Oncotarget. 6:34414–34422. 2015. View Article : Google Scholar : PubMed/NCBI

21 

Eschrich SA, Pramana J, Zhang H, Zhao H, Boulware D, Lee JH, Bloom G, Rocha-Lima C, Kelley S, Calvin DP, et al: A gene expression model of intrinsic tumor radiosensitivity: Prediction of response and prognosis after chemoradiation. Int J Radiat Oncol Biol Phys. 75:489–496. 2009. View Article : Google Scholar : PubMed/NCBI

22 

Corneil TA, Kuyper LM, Shoveller J, Hogg RS, Li K, Spittal PM, Schechter MT and Wood E: Unstable housing, associated risk behaviour, and increased risk for HIV infection among injection drug users. Health Place. 12:79–85. 2006. View Article : Google Scholar : PubMed/NCBI

23 

Kempe P, Van Oppen P, De Haan E, Twisk JW, Sluis A, Smit JH, van Dyck R and van Balkom AJ: Predictors of course in obsessive-compulsive disorder: Logistic regression versus Cox regression for recurrent events. Acta Psychiatr Scand. 116:201–210. 2007. View Article : Google Scholar : PubMed/NCBI

24 

Huang DW, Sherman BT and Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 4:44–57. 2009. View Article : Google Scholar : PubMed/NCBI

25 

Huang DW, Sherman BT and Lempicki RA: Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37:1–13. 2009. View Article : Google Scholar : PubMed/NCBI

26 

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES and Mesirov JP: Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 102:15545–15550. 2005. View Article : Google Scholar : PubMed/NCBI

27 

Schena M, Battaglia AF and Munoz F: Esophageal cancer developed in a radiated field: Can we reduce the risk of a poor prognosis cancer? J Thorac Dis. 9:1767–1771. 2017. View Article : Google Scholar : PubMed/NCBI

28 

Guo Y, Zhu XD, Qu S, Li L, Su F, Li Y, Huang ST and Li DR: Identification of genes involved in radioresistance of nasopharyngeal carcinoma by integrating gene ontology and protein-protein interaction networks. Int J Oncol. 40:85–92. 2012.PubMed/NCBI

29 

Looby E, Abdel-Latif MMM, Morales VA and Kelleher D: Bile acid exposure induces activation of the extracellular signal-regulated kinase and the transcription factor AP-1 in esophageal cancer cells. Gastroenterology. 124:A2762003. View Article : Google Scholar

30 

Liu F, Rehmani I, Esaki S, Fu R, Chen L, de Serrano V and Liu A: Pirin is an iron-dependent redox regulator of NF-κB. Proc Nati Acad Sci USA. 110:9722–9727. 2013. View Article : Google Scholar

31 

Maher S, Lynamlennon N and Reynolds J: Differential gene expression profiles as markers of radioresistance in esophageal cancer. Cancer Res. 68:2008.

32 

Ogawa R, Ishiguro H, Kuwabara Y, Kimura M, Mitsui A, Mori Y, Mori R, Tomoda K, Katada T, Harada K and Fujii Y: Identification of candidate genes involved in the radiosensitivity of esophageal cancer cells by microarray analysis. Dis Esophagus. 21:288–297. 2008. View Article : Google Scholar : PubMed/NCBI

33 

Allalunis-Turner MJ, Zia PK, Barron GM, Mirzayans R and Day RS III: Radiation-induced DNA damage and repair in cells of a radiosensitive human malignant glioma cell line. Radiat Res. 144:288–293. 1995. View Article : Google Scholar : PubMed/NCBI

34 

Chen Y, Li Z, Dong Z, Beebe J, Yang K, Fu L and Zhang JT: 14-3-3sigma contributes to radioresistance by regulating DNA repair and cell cycle via PARP1 and CHK2. Mol Cancer Res. 15:418–428. 2017. View Article : Google Scholar : PubMed/NCBI

35 

Pugh TJ, Keyes M, Barclay L, Delaney A, Krzywinski M, Thomas D, Novik K, Yang C, Agranovich A, McKenzie M, et al: Sequence variant discovery in DNA repair genes from radiosensitive and radiotolerant prostate brachytherapy patients. Clin Cancer Res. 15:5008–5016. 2009. View Article : Google Scholar : PubMed/NCBI

36 

Yi HM, Yi H, Zhu JF, Xiao T, Lu SS, Guan YJ and Xiao ZQ: A five-variable signature predicts radioresistance and prognosis in nasopharyngeal carcinoma patients receiving radical radiotherapy. Tumor Biol. 37:2941–2949. 2016. View Article : Google Scholar

37 

Bing Z, Tian J, Zhang J, Li X, Wang X and Yang K: An integrative model of miRNA and mRNA expression signature for patients of breast invasive carcinoma with radiotherapy prognosis. Cancer Biother Radiopharm. 31:253–260. 2016. View Article : Google Scholar : PubMed/NCBI

38 

Zhou J, Wu X, Li G, Gao X, Zhai M, Chen W, Hu H and Tang Z: Prediction of radiosensitive patients with gastric cancer by developing gene signature. Int J Oncol. 51:1067–1076. 2017. View Article : Google Scholar : PubMed/NCBI

39 

Vasireddy RS, Sprung CN, Cempaka NL, Chao M and Mckay MJ: H2AX phosphorylation screen of cells from radiosensitive cancer patients reveals a novel DNA double-strand break repair cellular phenotype. Br J Cancer. 102:1511–1518. 2010. View Article : Google Scholar : PubMed/NCBI

40 

Jacobs KM, Misri S, Meyer B, Raj S, Zobel CL, Sleckman BP, Hallahan DE and Sharma GG: Unique epigenetic influence of H2AX phosphorylation and H3K56 acetylation on normal stem cell radioresponses. Mol Biol Cell. 27:1332–1345. 2016. View Article : Google Scholar : PubMed/NCBI

41 

Jaiswal R, Raymond Grau GE and Bebawy M: Cellular communication via microparticles: Role in transfer of multidrug resistance in cancer. Future Oncol. 10:655–669. 2014. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 17 Issue 6

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Zhang, Q., Bing, Z., Tian, J., Wang, X., Liu, R., Li, Y. ... Yang, Y. (2019). Integrating radiosensitive genes improves prediction of radiosensitivity or radioresistance in patients with oesophageal cancer. Oncology Letters, 17, 5377-5388. https://doi.org/10.3892/ol.2019.10240
MLA
Zhang, Q., Bing, Z., Tian, J., Wang, X., Liu, R., Li, Y., Kong, Y., Yang, Y."Integrating radiosensitive genes improves prediction of radiosensitivity or radioresistance in patients with oesophageal cancer". Oncology Letters 17.6 (2019): 5377-5388.
Chicago
Zhang, Q., Bing, Z., Tian, J., Wang, X., Liu, R., Li, Y., Kong, Y., Yang, Y."Integrating radiosensitive genes improves prediction of radiosensitivity or radioresistance in patients with oesophageal cancer". Oncology Letters 17, no. 6 (2019): 5377-5388. https://doi.org/10.3892/ol.2019.10240