Open Access

Human epithelial ovarian cancer cells expressing CD105, CD44 and CD106 surface markers exhibit increased invasive capacity and drug resistance

  • Authors:
    • Jin Zhang
    • Baozhu Yuan
    • Huidan Zhang
    • Hongxia Li
  • View Affiliations

  • Published online on: April 5, 2019     https://doi.org/10.3892/ol.2019.10221
  • Pages: 5351-5360
  • Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The high rate of mortality associated with ovarian cancer (OC) is due in part to the development of resistance to chemotherapy, which allows the resistant tumour cells to invade and metastasise. Clarifying the mechanistic basis for drug resistance may reveal novel avenues for treatment. The present study investigated the mechanism of paclitaxel (PTX) resistance in human epithelial OC by evaluating the expression of stem cell‑associated cell surface markers endoglin (CD105), CD44 antigen and vascular cell adhesion molecule 1 (CD106), in association with the malignant potential of the human OC OVCAR3 cell line and its PTX‑resistant derivative OC3/TAX300. The expression of CD105, CD44 and CD106 was detected by reverse transcription quantitative polymerase chain reaction (RT‑qPCR) and flow cytometry, and cell invasion was evaluated using a Transwell invasion assay. CD105, CD44 and CD106 levels were increased in OC3/TAX300 cells compared with the OVCAR3 cells, as determined by flow cytometry (P<0.01) and RT‑qPCR (P<0.05). Additionally, the number of invading cells was increased in the OC3/TAX300 group compared with the OVCAR3 group (54.7±6.65 vs. 31.8±6.55; P<0.01). A western blot analysis of cell surface marker expression in 80 clinical epithelial OC tissue samples, differing in terms of sensitivity to drug treatments, disease stage and degree of differentiation, revealed that high CD105, CD44 or CD106 expression was associated with drug resistance, advanced disease stage, poor differentiation and high rate of recurrence. These data indicated that exposure to high doses of PTX enhanced the stem‑like properties of OC cells, which are associated with drug resistance and invasion and lead to poor prognosis due to induced chemoresistance and/or metastasis. Therefore, CD105, CD44 and CD106 may serve as potential stem cell‑associated cell surface and prognostic markers, and therapeutic targets, in OC.

References

1 

Jemal A, Siegel R, Xu J and Ward E: Cancer statistics, 2010. CA Cancer J Clin. 60:277–300. 2010. View Article : Google Scholar : PubMed/NCBI

2 

Steg AD, Bevis KS, Katre AA, Ziebarth A, Dobbin ZC, Alvarez RD, Zhang K, Conner M and Landen CN: Stem cell pathways contribute to clinical chemoresistance in ovarian cancer. Clin Cancer Res. 18:869–881. 2012. View Article : Google Scholar : PubMed/NCBI

3 

Rosen JM and Jordan CT: The increasing complexity of the cancer stem cell paradigm. Science. 324:1670–1673. 2009. View Article : Google Scholar : PubMed/NCBI

4 

Dalerba P, Cho RW and Clarke MF: Cancer stem cells: Models and concepts. Annu Rev Med. 58:267–284. 2007. View Article : Google Scholar : PubMed/NCBI

5 

Hsieh CH, Hsiung SC, Yeh CT, Yen CF, Chou YW, Lei WY, Pang ST, Chuang CK and Liao SK: Differential expression of CD44 and CD24 markers discriminates the epithelioid from the fibroblastoid subset in a sarcomatoid renal carcinoma cell line: Evidence suggesting the existence of cancer stem cells in both subsets as studied with sorted cells. Oncotarget. 8:15593–15609. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Zhang XF, Weng DS, Pan K, Zhou ZQ, Pan QZ, Zhao JJ, Tang Y, Jiang SS, Chen CL, Li YQ, et al: Dendritic-cell-based immunotherapy evokes potent anti-tumor immune responses in CD105+ human renal cancer stem cells. Mol Carcinog. 56:2499–2511. 2017. View Article : Google Scholar : PubMed/NCBI

7 

Zhang J and Li H: Heterogeneity of tumor chemosensitivity in ovarian epithelial cancer revealed using the adenosine triphosphate-tumor chemosensitivity assay. Oncol Lett. 9:2374–2380. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Muinao T, Deka Boruah HP and Pal M: Diagnostic and prognostic biomarkers in ovarian cancer and the potential roles of cancer stem cells-An updated review. Exp Cell Res. 362:1–10. 2018. View Article : Google Scholar : PubMed/NCBI

9 

Alvero AB, Montagna MK, Holmberg JC, Craveiro V, Brown DA and Mor G: Targeting the mitochondria activates two independent cell death pathways in the ovarian cancer stem cells. Mol Cancer Ther. 10:1385–1393. 2011. View Article : Google Scholar : PubMed/NCBI

10 

Slomiany MG, Dai L, Tolliver LB, Grass GD, Zeng Y and Toole BP: Inhibition of functional hyaluronan-CD44 interactions in CD133-positive primary human ovarian carcinoma cells by small hyaluronan oligosaccharides. Clin Cancer Res. 15:7593–7601. 2009. View Article : Google Scholar : PubMed/NCBI

11 

Bartakova A, Michalova K, Presl J, Vlasak P, Kostun J and Bouda J: CD44 as a cancer stem cell marker and its prognostic value in patients with ovarian carcinoma. J Obstet Gynaecol. 38:110–114. 2018. View Article : Google Scholar : PubMed/NCBI

12 

Ho CM, Chang SF, Hsiao CC, Chien TY and Shih DT: Isolation and characterization of stromal progenitor cells from ascites of patients with epithelial ovarian adenocarcinoma. J Biomed Sci. 19:232012. View Article : Google Scholar : PubMed/NCBI

13 

Bussolati B, Bruno S, Grange C, Ferrando U and Camussi G: Identification of a tumor-initiating stem cell population in human renal carcinomas. FASEB J. 22:3696–3705. 2008. View Article : Google Scholar : PubMed/NCBI

14 

Yang ZX, Han ZB, Ji YR, Wang YW, Liang L, Chi Y, Yang SG, Li LN, Luo WF, Li JP, et al: CD106 identifies a subpopulation of mesenchymal stem cells with unique immunomodulatory properties. PLoS One. 8:e593542013. View Article : Google Scholar : PubMed/NCBI

15 

Kokovay E, Wang Y, Kusek G, Wurster R, Lederman P, Lowry N, Shen Q and Temple S: VCAM1 is essential to maintain the structure of the SVZ niche and acts as an environmental sensor to regulate SVZ lineage progression. Cell Stem Cell. 11:220–230. 2012. View Article : Google Scholar : PubMed/NCBI

16 

Huang J, Zhang J, Li H, Lu Z, Shan W, Mercado-Uribe I and Liu J: VCAM1 expression correlated with tumorigenesis and poor prognosis in high grade serous ovarian cancer. Am J Transl Res. 5:336–346. 2013.PubMed/NCBI

17 

Zhang J, Zhao J, Zhang W, Liu G, Yin D, Li J, Zhang S and Li H: Establishment of paclitaxel-resistant cell line and the underlying mechanism on drug resistance. Int J Gynecol Cancer. 22:1450–1456. 2012.PubMed/NCBI

18 

Zhang L, Liu P, Li H and Xue F: Effect of histone deacetylase inhibitors on cell apoptosis and expression of the tumor suppressor genes RUNX3 and ARHI in ovarian tumors. Mol Med Rep. 7:1705–1709. 2013. View Article : Google Scholar : PubMed/NCBI

19 

Zhang J, Yin D and Li H: hMSH2 expression is associated with paclitaxel resistance in ovarian carcinoma, and inhibition of hMSH2 expression in vitro restores paclitaxel sensitivity. Oncol Rep. 32:2199–2206. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J and Sayers EW: GenBank. Nucleic Acids Res 41 (Database Issue). D36–D42. 2013.

21 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

22 

Daly MB, Pilarski R, Berry M, Buys SS, Farmer M, Friedman S, Garber JE, Kauff ND, Khan S, Klein C, et al: NCCN Guidelines insights. Genetic/Familial High-risk assessment: Breast and ovarian. version 2.2017. J Natl Compr Canc Netw. 15:9–20. 2017. View Article : Google Scholar : PubMed/NCBI

23 

Ozga M, Aghajanian C, Myers-Virtue S, McDonnell G, Jhanwar S, Hichenberg S and Sulimanoff I: A systematic review of ovarian cancer and fear of recurrence. Palliat Support Care. 13:1771–1780. 2015. View Article : Google Scholar : PubMed/NCBI

24 

Fung-Kee-Fung M, Oliver T, Elit L, Oza A, Hirte HW and Bryson P: Optimal chemotherapy treatment for women with recurrent ovarian cancer. Curr Oncol. 14:195–208. 2007. View Article : Google Scholar : PubMed/NCBI

25 

Barbara NP, Wrana JL and Letarte M: Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the transforming growth factor-beta superfamily. J Biol Chem. 274:584–594. 1999. View Article : Google Scholar : PubMed/NCBI

26 

Nassiri F, Cusimano MD, Scheithauer BW, Rotondo F, Fazio A, Yousef GM, Syro LV, Kovacs K and Lloyd RV: Endoglin (CD105): A review of its role in angiogenesis and tumor diagnosis, progression and therapy. Anticancer Res. 31:2283–2290. 2011.PubMed/NCBI

27 

Dallas NA, Samuel S, Xia L, Fan F, Gray MJ, Lim SJ and Ellis LM: Endoglin (CD105): A marker of tumor vasculature and potential target for therapy. Clin Cancer Res. 14:1931–1937. 2008. View Article : Google Scholar : PubMed/NCBI

28 

Taskiran C, Erdem O, Onan A, Arisoy O, Acar A, Vural C, Erdem M, Ataoglu O and Guner H: The prognostic value of endoglin (CD105) expression in ovarian carcinoma. Int J Gynecol Cancer. 16:1789–1793. 2006. View Article : Google Scholar : PubMed/NCBI

29 

Saad RS, El-Gohary Y, Memari E, Liu YL and Silverman JF: Endoglin (CD105) and vascular endothelial growth factor as prognostic markers in esophageal adenocarcinoma. Hum Pathol. 36:955–961. 2005. View Article : Google Scholar : PubMed/NCBI

30 

Chien CY, Su CY, Hwang CF, Chuang HC, Chen CM and Huang CC: High expressions of CD105 and VEGF in early oral cancer predict potential cervical metastasis. J Surg Oncol. 94:413–417. 2006. View Article : Google Scholar : PubMed/NCBI

31 

Cho T, Shiozawa E, Urushibara F, Arai N, Funaki T, Takehara Y, Tazawa S, Misawa M, Homma M, Norose T, et al: The role of microvessel density, lymph node metastasis, and tumor size as prognostic factors of distant metastasis in colorectal cancer. Oncol Lett. 13:4327–4333. 2017. View Article : Google Scholar : PubMed/NCBI

32 

Fonsatti E and Maio M: Highlights on endoglin (CD105): From basic findings towards clinical applications in human cancer. J Transl Med. 2:182004. View Article : Google Scholar : PubMed/NCBI

33 

Ding S, Li C, Lin S, Yang Y, Liu D, Han Y, Zhang Y, Li L, Zhou L and Kumar S: Comparative evaluation of microvessel density determined by CD34 or CD105 in benign and malignant gastric lesions. Hum Pathol. 37:861–866. 2006. View Article : Google Scholar : PubMed/NCBI

34 

Gromova P, Rubin BP, Thys A, Cullus P, Erneux C and Vanderwinden JM: ENDOGLIN/CD105 is expressed in KIT positive cells in the gut and in gastrointestinal stromal tumors. J Cell Mol Med. 16:306–317. 2012. View Article : Google Scholar : PubMed/NCBI

35 

Ribeiro OD, Canedo NH and Pannain VL: Immunohistochemical angiogenic biomarkers in hepatocellular carcinoma and cirrhosis: Correlation with pathological features. Clinics (Sao Paulo). 71:639–643. 2016. View Article : Google Scholar : PubMed/NCBI

36 

Davidson B, Stavnes HT, Førsund M, Berner A and Staff AC: CD105 (Endoglin) expression in breast carcinoma effusions is a marker of poor survival. Breast. 19:493–498. 2010. View Article : Google Scholar : PubMed/NCBI

37 

Litwiniuk M, Niemczyk K, Niderla-Bielińska J, Łukawska-Popieluch I and Grzela T: Soluble endoglin (CD105) serum level as a potential marker in the management of head and neck paragangliomas. Ann Otol Rhinol Laryngol. 126:717–721. 2017. View Article : Google Scholar : PubMed/NCBI

38 

Bock AJ, Tuft Stavnes H, Kærn J, Berner A, Staff AC and Davidson B: Endoglin (CD105) expression in ovarian serous carcinoma effusions is related to chemotherapy status. Tumour Biol. 32:589–596. 2011. View Article : Google Scholar : PubMed/NCBI

39 

Hu D, Wang X, Mao Y and Zhou L: Identification of CD105 (endoglin)-positive stem-like cells in rhabdoid meningioma. J Neurooncol. 106:505–517. 2012. View Article : Google Scholar : PubMed/NCBI

40 

Ziebarth AJ, Nowsheen S, Steg AD, Shah MM, Katre AA, Dobbin ZC, Han HD, Lopez-Berestein G, Sood AK, Conner M, et al: Endoglin (CD105) contributes to platinum resistance and is a target for tumor-specific therapy in epithelial ovarian cancer. Clin Cancer Res. 19:170–182. 2013. View Article : Google Scholar : PubMed/NCBI

41 

Nomura Y, Yamashita T, Oishi N, Nio K, Hayashi T, Yoshida M, Hayashi T, Hashiba T, Asahina Y, Okada H, et al: De novo emergence of mesenchymal stem-like CD105+ cancer cells by cytotoxic agents in human hepatocellular carcinoma. Transl Oncol. 10:184–189. 2017. View Article : Google Scholar : PubMed/NCBI

42 

Minhajat R, Mori D, Yamasaki F, Sugita Y, Satoh T and Tokunaga O: Organ-specific endoglin (CD105) expression in the angiogenesis of human cancers. Pathol Int. 56:717–723. 2006. View Article : Google Scholar : PubMed/NCBI

43 

Hu J, Guan W, Liu P, Dai J, Tang K, Xiao H, Qian Y, Sharrow AC, Ye Z, Wu L and Xu H: Endoglin is essential for the maintenance of self-renewal and chemoresistance in renal cancer stem cells. Stem Cell Rep. 9:464–477. 2017. View Article : Google Scholar

44 

Ehlerding EB, Lacognata S, Jiang D, Ferreira CA, Goel S, Hernandez R, Jeffery JJ, Theuer CP and Cai W: Targeting angiogenesis for radioimmunotherapy with a 177Lu-labeled antibody. Eur J Nucl Med Mol Imaging. 45:123–131. 2018. View Article : Google Scholar : PubMed/NCBI

45 

Dourado KMC, Baik J, Oliveira VKP, Beltrame M, Yamamoto A, Theuer CP, Figueiredo CAV, Verneris MR and Perlingeiro RCR: Endoglin: A novel target for therapeutic intervention in acute leukemias revealed in xenograft mouse models. Blood. 129:2526–2536. 2017. View Article : Google Scholar : PubMed/NCBI

46 

Duffy AG, Ma C, Ulahannan SV, Rahma OE, Makarova-Rusher O, Cao L, Yu Y, Kleiner DE, Trepel J, Lee MJ, et al: Phase I and preliminary phase II study of TRC105 in combination with sorafenib in hepatocellular carcinoma. Clin Cancer Res. 23:4633–4641. 2017. View Article : Google Scholar : PubMed/NCBI

47 

Apolo AB, Karzai FH, Trepel JB, Alarcon S, Lee S, Lee MJ, Tomita Y, Cao L, Yu Y, Merino MJ, et al: A phase II clinical trial of TRC105 (anti-endoglin antibody) in adults with advanced/metastatic urothelial carcinoma. Clin Genitourin Cancer. 15:77–85. 2017. View Article : Google Scholar : PubMed/NCBI

48 

Malhotra S and Kincade PW: Canonical Wnt pathway signaling suppresses VCAM-1 expression by marrow stromal and hematopoietic cells. Exp Hematol. 37:19–30. 2009. View Article : Google Scholar : PubMed/NCBI

49 

Yamada Y, Arao T, Matsumoto K, Gupta V, Tan W, Fedynyshyn J, Nakajima TE, Shimada Y, Hamaguchi T, Kato K, et al: Plasma concentrations of VCAM-1 and PAI-1: A predictive biomarker for post-operative recurrence in colorectal cancer. Cancer Sci. 101:1886–1890. 2010. View Article : Google Scholar : PubMed/NCBI

50 

Yurkovetsky Z, Skates S, Lomakin A, Nolen B, Pulsipher T, Modugno F, Marks J, Godwin A, Gorelik E, Jacobs I, et al: Development of a multimarker assay for early detection of ovarian cancer. J Clin Oncol. 28:2159–2166. 2010. View Article : Google Scholar : PubMed/NCBI

51 

Dymicka-Piekarska V, Guzinska-Ustymowicz K, Kuklinski A and Kemona H: Prognostic significance of adhesion molecules (sICAM-1, sVCAM-1) and VEGF in colorectal cancer patients. Thromb Res. 129:e47–e50. 2012. View Article : Google Scholar : PubMed/NCBI

52 

Shah N, Cabanillas F, McIntyre B, Feng L, McLaughlin P, Rodriguez MA, Romaguera J, Younes A, Hagemeister FB, Kwak L and Fayad L: Prognostic value of serum CD44, intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 levels in patients with indolent non-Hodgkin lymphomas. Leuk Lymphoma. 53:50–56. 2012. View Article : Google Scholar : PubMed/NCBI

53 

Ding YB, Chen GY, Xia JG, Zang XW, Yang HY and Yang L: Association of VCAM-1 overexpression with oncogenesis, tumor angiogenesis and metastasis of gastric carcinoma. World J Gastroenterol. 9:1409–1414. 2003. View Article : Google Scholar : PubMed/NCBI

54 

Slack-Davis JK, Atkins KA, Harrer C, Hershey ED and Conaway M: Vascular cell adhesion molecule-1 is a regulator of ovarian cancer peritoneal metastasis. Cancer Res. 69:1469–1476. 2009. View Article : Google Scholar : PubMed/NCBI

55 

Wang PC, Weng CC, Hou YS, Jian SF, Fang KT, Hou MF and Cheng KH: Activation of VCAM-1 and its associated molecule CD44 leads to increased malignant potential of breast cancer cells. Int J Mol Sci. 15:3560–3579. 2014. View Article : Google Scholar : PubMed/NCBI

56 

Chen Q, Zhang XH and Massagué J: Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs. Cancer Cell. 20:538–549. 2011. View Article : Google Scholar : PubMed/NCBI

57 

Kim MR, Jang JH, Park CS, Kim TK, Kim YJ, Chung J, Shim H, Nam IH, Han J and Lee S: A human antibody that binds to the sixth Ig-like domain of VCAM-1 blocks lung cancer cell migration in vitro. Int J Mol Sci. 18(pii): E5662017. View Article : Google Scholar : PubMed/NCBI

58 

Yan Y, Zuo X and Wei D: Concise review: Emerging role of CD44 in cancer stem cells: A Promising biomarker and therapeutic target. Stem Cells Transl Med. 4:1033–1043. 2015. View Article : Google Scholar : PubMed/NCBI

59 

Takaishi S, Okumura T, Tu S, Wang SS, Shibata W, Vigneshwaran R, Gordon SA, Shimada Y and Wang TC: Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells. 27:1006–1020. 2009. View Article : Google Scholar : PubMed/NCBI

60 

Hu J, Li G, Zhang P, Zhuang X and Hu G: A CD44v+ subpopulation of breast cancer stem-like cells with enhanced lung metastasis capacity. Cell Death Dis. 8:e26792017. View Article : Google Scholar : PubMed/NCBI

61 

Pietras A, Katz AM, Ekström EJ, Wee B, Halliday JJ, Pitter KL, Werbeck JL, Amankulor NM, Huse JT and Holland EC: Osteopontin-CD44 signaling in the glioma perivascular niche enhances cancer stem cell phenotypes and promotes aggressive tumor growth. Cell Stem Cell. 14:357–369. 2014. View Article : Google Scholar : PubMed/NCBI

62 

Su YJ, Lai HM, Chang YW, Chen GY and Lee JL: Direct reprogramming of stem cell properties in colon cancer cells by CD44. EMBO J. 30:3186–3199. 2011. View Article : Google Scholar : PubMed/NCBI

63 

Gao Y, Foster R, Yang X, Feng Y, Shen JK, Mankin HJ, Hornicek FJ, Amiji MM and Duan Z: Up-regulation of CD44 in the development of metastasis, recurrence and drug resistance of ovarian cancer. Oncotarget. 6:9313–9326. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 17 Issue 6

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Zhang, J., Yuan, B., Zhang, H., & Li, H. (2019). Human epithelial ovarian cancer cells expressing CD105, CD44 and CD106 surface markers exhibit increased invasive capacity and drug resistance. Oncology Letters, 17, 5351-5360. https://doi.org/10.3892/ol.2019.10221
MLA
Zhang, J., Yuan, B., Zhang, H., Li, H."Human epithelial ovarian cancer cells expressing CD105, CD44 and CD106 surface markers exhibit increased invasive capacity and drug resistance". Oncology Letters 17.6 (2019): 5351-5360.
Chicago
Zhang, J., Yuan, B., Zhang, H., Li, H."Human epithelial ovarian cancer cells expressing CD105, CD44 and CD106 surface markers exhibit increased invasive capacity and drug resistance". Oncology Letters 17, no. 6 (2019): 5351-5360. https://doi.org/10.3892/ol.2019.10221