Open Access

Sirtuin 1 knockdown inhibits glioma cell proliferation and potentiates temozolomide toxicity via facilitation of reactive oxygen species generation

  • Authors:
    • Hongwu Chen
    • Rui Lin
    • Ziheng Zhang
    • Quantang Wei
    • Zhiwei Zhong
    • Jiehao Huang
    • Yimin Xu
  • View Affiliations

  • Published online on: April 9, 2019     https://doi.org/10.3892/ol.2019.10235
  • Pages: 5343-5350
  • Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Malignant glioma is one of the most common types of primary malignancies in the human central nervous system. Temozolomide (TMZ) is the most commonly used drug in clinical therapy of glioma; however, chemoresistance makes glioma difficult to cure and relapse likely. Sirtuin 1 (SIRT1) serves important roles in cell proliferation, differentiation and metabolism, but the role of SIRT1 in human glioma remains largely unexplored. In the present study, SIRT1 expression was assessed in human glioma tissues and cells. RNA interference and SIRT1 inhibitor were used to determine the effect of SIRT1 on glioma growth inhibition and glioma cell chemoresistance in vitro and in vivo. The levels of reactive oxygen species (ROS) in glioma cells were detected with the dihydroethidium probe following SIRT1 inhibition. The results demonstrated that SIRT1 was overexpressed in glioma tissues and cells, and patients with higher SIRT1 expression exhibited poorer prognosis. SIRT1 inhibition inhibited the proliferation of U87 and U251 cells. In addition, SIRT1 knockdown and SIRT1 inhibitor could significantly sensitize glioma cells to TMZ treatment in vitro and in vivo. The expression of Ki67 and p53 was demonstrated to be regulated by SIRT1. Finally, SIRT1 could regulate intracellular ROS generation in TMZ. In summary, SIRT1 was essential for glioma tumorigenesis and glioma cell chemoresistance. SIRT1 inhibition increased the sensitivity of glioma cells for TMZ via the facilitation of intracellular ROS generation, which suggested that SIRT1 may serve as a target for clinical therapy of glioma.

References

1 

Dunn GP, Rinne ML, Wykosky J, Genovese G, Quayle SN, Dunn IF, Agarwalla PK, Chheda MG, Campos B, Wang A, et al: Emerging insights into the molecular and cellular basis of glioblastoma. Genes Dev. 26:756–784. 2012. View Article : Google Scholar : PubMed/NCBI

2 

Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW and Kleihues P: The 2007 WHO classifcation of tumours of the central nervous system. Acta Neuro Pathol. 114:97–109. 2007.

3 

Cloughesy TF, Cavenee WK and Mischel PS: Glioblastoma: From molecular pathology to targeted treatment. Annu Rev Pathol. 9:1–25. 2014. View Article : Google Scholar : PubMed/NCBI

4 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2017. CA Cancer Clin. 67:7–30. 2017. View Article : Google Scholar

5 

Liao AY, Shi RR, Jiang YL, Tian S, Li P, Song F, Qu Y, Li J, Yun H and Yang X: SDF-1/CXCR4 axis regulates cell cycle progression and epithelial-mesenchymal transition via up-regulation of survivin in glioblastoma. Mol Neurobiol. 53:210–215. 2016. View Article : Google Scholar : PubMed/NCBI

6 

Altieri R, Fontanella M, Agnoletti A, Pnciani PP, Spena G, Crobeddu E, Pilloni G, Tardivo V, Lanotte M, Zenga F, et al: Role of nitric oxide in glioblastoma therapy: Another step to resolve the terrible puzzle. Transl Med UniSa. 12:54–59. 2014.PubMed/NCBI

7 

De Paepe A, Vandeneede N, Strens D and Specenier P: The economics of the treatment and follow-up of patients with glioblastoma. Value Health. 18:A4482015. View Article : Google Scholar

8 

Lv B, Yang X, Lv S, Wang L, Fan K, Shi R, Wang F, Song H, Ma X, Tan X, et al: CXCR4 signaling induced epithelial-mesenchymal transition by PI3K/AKT and ERK pathways in glioblastoma. Mol Neurobiol. 52:1263–1268. 2015. View Article : Google Scholar : PubMed/NCBI

9 

Lin SJ, Defossez PA and Guarente L: Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science. 289:2126–2128. 2000. View Article : Google Scholar : PubMed/NCBI

10 

Ford J, Jiang M and Milner J: Cancer-specific functions of SIRT1 enable human epithelial cancer cell growth and survival. Cancer Res. 65:10457–10463. 2005. View Article : Google Scholar : PubMed/NCBI

11 

Smith JS, Brachmann CB, Celic I, Kenna MA, Muhammad S, Starai VJ, Avalos JL, Escalante-Semerena JC, Grubmeyer C, Wolberger C and Boeke JD: A phylogenetically conserved NAD(+)-dependent protein deacetylase activity in the Sir2 protein family. Proc Natl Acad Sci USA. 97:6658–6663. 2000. View Article : Google Scholar : PubMed/NCBI

12 

Imai S, Armstrong CM, Kaeberlein M and Guarente L: Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 403:795–800. 2000. View Article : Google Scholar : PubMed/NCBI

13 

Saunders LR and Verdin E: Sirtuins: Critical regulators at the crossroads between cancer and aging. Oncogene. 26:5489–5504. 2007. View Article : Google Scholar : PubMed/NCBI

14 

Baylin SB and Ohm JE: Epigenetic gene silencing in cancer-a mechanism for early oncogenic pathway addiction? Nat Rev Cancer. 6:107–116. 2006. View Article : Google Scholar : PubMed/NCBI

15 

Chen WY, Wang DH, Yen RC, Luo J, Gu W and Baylin SB: Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell. 123:437–448. 2005. View Article : Google Scholar : PubMed/NCBI

16 

Choi HN, Bae JS, Jamiyandorj U, Noh SJ, Park HS, Jang KY, Chung MJ, Kang MJ, Lee DG and Moon WS: Expression and role of SIRT1 in hepatocellular carcinoma. Oncol Rep. 26:503–510. 2011.PubMed/NCBI

17 

Huffman DM, Grizzle WE, Bamman MM, Kim JS, Eltoum IA, Elgavish A and Nagy TR: SIRT1 is significantly elevated in mouse and human prostate cancer. Cancer Res. 67:6612–6618. 2007. View Article : Google Scholar : PubMed/NCBI

18 

Jang KY, Kim KS, Hwang SH, Kwon KS, Kim KR, Park HS, Park BH, Chung MJ, Kang MJ, Lee DG and Moon WS: Expression and prognostic significance of SIRT1 in ovarian epithelial tumours. Pathology. 41:366–371. 2009. View Article : Google Scholar : PubMed/NCBI

19 

Jang KY, Hwang SH, Kwon KS, Kim KR, Choi HN, Lee NR, Kwak JY, Park BH, Park HS, Chung MJ, et al: SIRT1 expression is associated with poor prognosis of diffuse large B-cell lymphoma. Am J Surg Pathol. 32:1523–1531. 2008. View Article : Google Scholar : PubMed/NCBI

20 

Qu Y, Zhang J, Wu S, Li B, Liu S and Cheng J: SIRT1 promotes proliferation and inhibits apoptosis of human malignant glioma cell lines. Neurosci Lett. 525:168–172. 2012. View Article : Google Scholar : PubMed/NCBI

21 

Allen M, Bjerke M, Edlund H, Nelander S and Westermark B: Origin of the U87MG glioma cell line: Good news and bad news. Sci Transl Med. 8:354re32016. View Article : Google Scholar : PubMed/NCBI

22 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

23 

Lopez-Valero I, Saiz-Ladera C, Torres S, Hernández-Tiedra S, García-Taboada E, Rodríguez-Fornés F, Barba M, Dávila D, Salvador-Tormo N, Guzmán M, et al: Targeting glioma initiating cells with a combined therapy of cannabinoids and temozolomide. Biochem Pharmacol. 157:266–274. 2018. View Article : Google Scholar : PubMed/NCBI

24 

Yamashita AS, da Costa Rosa M, Borodovsky A, Festuccia WT, Chan T and Riggins GJ: Demethylation and epigenetic modification with 5-Azacytidine reduces IDH1 mutant glioma growth in combination with Temozolomide. Neuro Oncol. 2018.

25 

Costa PM, Cardoso AL, Nóbrega C, Pereira de Almeida LF, Bruce JN, Canoll P and Pedroso de Lima MC: MicroRNA-21 silencing enhances the cytotoxic effect of the antiangiogenic drug sunitinib in glioblastoma. Hum Mol Genet. 22:904–918. 2013. View Article : Google Scholar : PubMed/NCBI

26 

Hung AL, Maxwell R, Theodros D, Belcaid Z, Mathios D, Luksik AS, Kim E, Wu A, Xia Y, Garzon-Muvdi T, et al: TIGIT and PD-1 dual checkpoint blockade enhances antitumor immunity and survival in GBM. Oncoimmunology. 7:e14667692018. View Article : Google Scholar : PubMed/NCBI

27 

Ruan Y, Dong CL, Patel J, Duan C, Wang X, Wu X, Cao Y, Pu L, Lu D, Shen T and Li J: SIRT1 suppresses doxorubicin-induced cardiotoxicity by regulating the oxidative stress and p38MAPK pathways. Cell Physiol Biochem. 35:1116–1124. 2015. View Article : Google Scholar : PubMed/NCBI

28 

Chen HC, Lu Q, Fei XF, Shen L, Jiang D and Dai D: miR-22 inhibits the proliferation, motility, and invasion of human glioblastoma cells by directly targeting SIRT1. Tumor Biol. 37:6761–6768. 2016. View Article : Google Scholar

29 

Zhou YF, Zhou Z, Zhang W, Hu X, Wei H, Peng J and Jiang S: SIRT1 inhibits adipogenesis and promotes myogenic differentiation in C3H10T1/2 pluripotent cells by regulating Wnt signaling. Cell Biosci. 5:612015. View Article : Google Scholar : PubMed/NCBI

30 

Shuang T, Wang M, Zhou Y and Shi C: Over-expression of Sirt1 contributes to chemoresistance and indicates poor prognosis in serous epithelial ovarian cancer (EOC). Med Oncol. 32:2602015. View Article : Google Scholar : PubMed/NCBI

31 

Linz U: Commentary on Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial (Lancet Oncol. 2009;10:459-466). Cancer. 116:1844–1846. 2010. View Article : Google Scholar : PubMed/NCBI

32 

Gaspar N, Marshall L, Perryman L, Bax DA, Little SE, Viana-Pereira M, Sharp SY, Vassal G, Pearson AD, Reis RM, et al: MGMT-independent temozolomide resistance in pediatric glioblastoma cells associated with a PI3-kinase-mediated HOX/stem cell gene signature. Cancer Res. 70:9243–9252. 2010. View Article : Google Scholar : PubMed/NCBI

33 

Pyko IV, Nakada M, Sabit H, Teng L, Furuyama N, Hayashi Y, Kawakami K, Minamoto T, Fedulau AS and Hamada J: Glycogen synthase kinase 3β inhibition sensitizes human glioblastoma cells to temozolomide by affecting O6-methylguanine DNA methyltransferase promoter methylation via c-Myc signaling. Carcinogenesis. 34:2206–2217. 2013. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 17 Issue 6

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Chen, H., Lin, R., Zhang, Z., Wei, Q., Zhong, Z., Huang, J., & Xu, Y. (2019). Sirtuin 1 knockdown inhibits glioma cell proliferation and potentiates temozolomide toxicity via facilitation of reactive oxygen species generation. Oncology Letters, 17, 5343-5350. https://doi.org/10.3892/ol.2019.10235
MLA
Chen, H., Lin, R., Zhang, Z., Wei, Q., Zhong, Z., Huang, J., Xu, Y."Sirtuin 1 knockdown inhibits glioma cell proliferation and potentiates temozolomide toxicity via facilitation of reactive oxygen species generation". Oncology Letters 17.6 (2019): 5343-5350.
Chicago
Chen, H., Lin, R., Zhang, Z., Wei, Q., Zhong, Z., Huang, J., Xu, Y."Sirtuin 1 knockdown inhibits glioma cell proliferation and potentiates temozolomide toxicity via facilitation of reactive oxygen species generation". Oncology Letters 17, no. 6 (2019): 5343-5350. https://doi.org/10.3892/ol.2019.10235