MicroRNAs aid the assessment of programmed death ligand 1 expression in patients with non‑small cell lung cancer

  • Authors:
    • Anna Grenda
    • Marcin Nicoś
    • Michał Szczyrek
    • Paweł Krawczyk
    • Tomasz Kucharczyk
    • Bożena Jarosz
    • Juliusz Pankowski
    • Marek Sawicki
    • Justyna Szumiło
    • Paulina Bukała
    • Janusz Milanowski
  • View Affiliations

  • Published online on: April 3, 2019     https://doi.org/10.3892/ol.2019.10207
  • Pages: 5193-5200
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The qualification of patients with non‑small cell lung cancer (NSCLC) for anti‑programmed cell death 1 (PD-1) or anti‑programmed death ligand 1 (PD‑L1) antibody therapy is based on an immunohistochemistry (IHC) assessment of PD‑L1 expression. Immunological checkpoint inhibitors improve the overall survival of patients with expression of PD‑L1; however certain PD‑L1‑negative patients may also benefit from immunotherapy. This indicates the requirement for novel predictive factors for the qualification of immunotherapy. It is also necessary to understand the mechanisms that effect the expression of PD‑L1 in tumor cells. The expression of PD‑L1 in 47 formalin‑fixed, paraffin‑embedded, NSCLC specimens was assessed using IHC and reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). The expression of 8 microRNAs (miRNAs, miRs) complementary to PD‑L1‑mRNA was also evaluated using RT‑qPCR. A positive correlation was revealed between the expression level of PD‑L1‑mRNA and 2 miRs, miR‑141 (R=0.533; P=0.0029) and miR‑1184 (R=0.463; P=0.049). There was also a positive correlation between the percentage of PD‑L1‑positive tumor cells and the expression levels of miR‑141 (R=0.441; P=0.0024), miR‑200b (R=0.372; P=0.011) and miR‑429 (R=0.430; P=0.0028), and between the percentage of the tumor area with immune cell infiltration and the expression levels of miR‑141 (R=0.333; P=0.03) and miR‑200b (R=0.312; P=0.046). Additionally, the percentage of tumor cells expressing PD‑L1 positively correlated with miR‑141 expression (R=0.407; P=0.0055). Correlations between the expression of the investigated miRs (particularly miR‑141) and PD‑L1 indicated that miRs may regulate PD‑L1 expression at a post‑transcriptional level.

References

1 

Muenst S, Soysal SD, Tzankov A and Hoeller S: The PD-1/PD-L1 pathway: biological background and clinical relevance of an emerging treatment target in immunotherapy. Expert Opin Ther Targets. 19:201–211. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Sharma P and Allison JP: The future of immune checkpoint therapy. Science. 348:56–61. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Zou W, Wolchok JD and Chen L: PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci Transl Med. 8:328rv42016. View Article : Google Scholar : PubMed/NCBI

4 

Weber JS, D'Angelo SP, Minor D, Hodi FS, Gutzmer R, Neyns B, Hoeller C, Khushalani NI, Miller WH Jr, Lao CD, et al: Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 16:375–384. 2015. View Article : Google Scholar : PubMed/NCBI

5 

Horn L, Spigel DR, Vokes EE, Holgado E, Ready N, Steins M, Poddubskaya E, Borghaei H, Felip E, Paz-Ares L, et al: Nivolumab versus docetaxel in previously treated patients with advanced non-small-cell lung cancer: two-year outcomes from two randomized, open-Label, phase III trials (CheckMate 017 and CheckMate 057). J Clin Oncol. 35:3924–3933. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, Gottfried M, Peled N, Tafreshi A, Cuffe S, et al KEYNOTE-024 Investigators, : pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 375:1823–1833. 2016. View Article : Google Scholar : PubMed/NCBI

7 

Gandhi L, Rodríguez-Abreu D, Gadgeel S, Esteban E, Felip E, De Angelis F, Domine M, Clingan P, Hochmair MJ, Powell SF, et al KEYNOTE-189 Investigators, : pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med. 378:2078–2092. 2018. View Article : Google Scholar : PubMed/NCBI

8 

Sharma P and Allison JP: Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell. 161:205–214. 2015. View Article : Google Scholar : PubMed/NCBI

9 

Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, Chow LQ, Vokes EE, Felip E, Holgado E, et al: Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 373:1627–1639. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WE, Poddubskaya E, Antonia S, Pluzanski A, Vokes EE, Holgado E, et al: Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 373:123–135. 2015. View Article : Google Scholar : PubMed/NCBI

11 

Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, Patnaik A, Aggarwal C, Gubens M, Horn L, et al KEYNOTE-001 Investigators, : pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 372:2018–2028. 2015. View Article : Google Scholar : PubMed/NCBI

12 

Gadgeel S, Kowanetz M, Zou W, Hirsch FR, Kerr KM, Gandara DR, Barlesi F, Park K, McCleland M, Koeppen H, et al: Clinical efficacy of atezolizumab (Atezo) in PD-L1 subgroups defined by SP142 and 22C3 IHC assays in 2L+NSCLC: results from the randomized OAK study. Ann Oncol. 28 (Suppl 5):v460–v496. 2017. View Article : Google Scholar

13 

Mino-Kenudson M: Immunohistochemistry for predictive biomarkers in non-small cell lung cancer. Transl Lung Cancer Res. 6:570–587. 2017. View Article : Google Scholar : PubMed/NCBI

14 

Brogden KA, Parashar D, Hallier AR, Braun T, Qian F, Rizvi NA, Bossler AD, Milhem MM, Chan TA, Abbasi T and Vali S: Genomics of NSCLC patients both affirm PD-L1 expression and predict their clinical responses to anti-PD-1 immunotherapy. BMC Cancer. 18:2252018. View Article : Google Scholar : PubMed/NCBI

15 

Pillai RS: MicroRNA function: Multiple mechanisms for a tiny RNA? RNA. 11:1753–1761. 2005. View Article : Google Scholar : PubMed/NCBI

16 

Parker R and Sheth U: P bodies and the control of mRNA translation and degradation. Mol Cell. 25:635–646. 2007. View Article : Google Scholar : PubMed/NCBI

17 

Wang Q, Lin W, Tang X, Li S, Guo L, Lin Y and Kwok HF: The roles of microRNAs in regulating the expression of PD-1/PD-L1 immune checkpoint. Int J Mol Sci. 18:E25402017. View Article : Google Scholar : PubMed/NCBI

18 

Xie WB, Liang LH, Wu KG, Wang LX, He X, Song C, Wang YQ and Li YH: MiR-140 expression regulates cell proliferation and targets PD-L1 in NSCLC. Cell Physiol Biochem. 46:654–663. 2018. View Article : Google Scholar : PubMed/NCBI

19 

Gibbons DL, Chen L, Goswami S, Cortez MA, Ahn YH, Byers LA, Lin W, Diao L, Wang J, Roybal J, et al: Regulation of tumor cell PD-L1 expression by microRNA-200 and control of lung cancer metastasis. J Clin Oncol. 32 (Suppl 15):8063. 2015. View Article : Google Scholar

20 

Schmittgen TD and Livak KJ: Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 3:1101–1108. 2008. View Article : Google Scholar : PubMed/NCBI

21 

Rudzki JD: Management of adverse events related to checkpoint inhibition therapy. Memo. 11:132–137. 2018. View Article : Google Scholar : PubMed/NCBI

22 

Postow MA, Sidlow R and Hellmann MD: Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med. 378:158–168. 2018. View Article : Google Scholar : PubMed/NCBI

23 

Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, von Pawel J, Gadgeel SM, Hida T, Kowalski DM, Dols MC, et al OAK Study Group, : Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): A phase 3, open-label, multicentre randomised controlled trial. Lancet. 389:255–265. 2017. View Article : Google Scholar : PubMed/NCBI

24 

Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, Sosman JA, McDermott DF, Powderly JD, Gettinger SN, et al: Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 515:563–567. 2014. View Article : Google Scholar : PubMed/NCBI

25 

Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS, et al: Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 348:124–128. 2015. View Article : Google Scholar : PubMed/NCBI

26 

Shukuya T, Amann J, Ghai V, Wang K and Carbone DP: Circulating miRNA and extracellular vesicle containing miRNA as response biomarkers of anti PD-1/PD-L1 therapy in non-small-cell lung cancer. J Clin Oncol 36 (Suppl 15):. 3058:2018.

27 

Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, Shannon MF and Goodall GJ: A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res. 68:7846–7854. 2008. View Article : Google Scholar : PubMed/NCBI

28 

Knyazev EN, Fomicheva KA, Mikhailenko DS, Nyushko KM, Samatov TR, Alekseev BY and Shkurnikov MY: Plasma levels of hsa-miR-619-5p and hsa-miR-1184 differ in prostatic benign hyperplasia and cancer. Bull Exp Biol Med. 161:108–111. 2016. View Article : Google Scholar : PubMed/NCBI

29 

Feng F, Wu J, Gao Z, Yu S and Cui Y: Screening the key microRNAs and transcription factors in prostate cancer based on microRNA functional synergistic relationships. Medicine (Baltimore). 96:e56792017. View Article : Google Scholar : PubMed/NCBI

30 

Farina NH, Ramsey JE, Cuke ME, Ahern TP, Shirley DJ, Stein JL, Stein GS, Lian JB and Wood ME: Development of a predictive miRNA signature for breast cancer risk among high-risk women. Oncotarget. 8:112170–112183. 2017. View Article : Google Scholar : PubMed/NCBI

31 

Mei Z, He Y, Feng J, Shi J, Du Y, Qian L, Huang Q and Jie Z: MicroRNA-141 promotes the proliferation of non-small cell lung cancer cells by regulating expression of PHLPP1 and PHLPP2. FEBS Lett. 588:3055–3061. 2014. View Article : Google Scholar : PubMed/NCBI

32 

Zuo QF, Zhang R, Li BS, Zhao YL, Zhuang Y, Yu T, Gong L, Li S, Xiao B and Zou QM: MicroRNA-141 inhibits tumor growth and metastasis in gastric cancer by directly targeting transcriptional co-activator with PDZ-binding motif, TAZ. Cell Death Dis. 6:e16232015. View Article : Google Scholar : PubMed/NCBI

33 

Huang Z, Shi T, Zhou Q, Shi S, Zhao R, Shi H, Dong L, Zhang C, Zeng K, Chen J, et al: miR-141 Regulates colonic leukocytic trafficking by targeting CXCL12β during murine colitis and human Crohn's disease. Gut. 63:1247–1257. 2014. View Article : Google Scholar : PubMed/NCBI

34 

Xiao P, Liu W and Zhou H: miR-200b inhibits migration and invasion in non-small cell lung cancer cells via targeting FSCN1. Mol Med Rep. 14:1835–1840. 2016. View Article : Google Scholar : PubMed/NCBI

35 

Gibbons DL, Lin W, Creighton CJ, Rizvi ZH, Gregory PA, Goodall GJ, Thilaganathan N, Du L, Zhang Y, Pertsemlidis A, et al: Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression. Genes Dev. 23:2140–2151. 2009. View Article : Google Scholar : PubMed/NCBI

36 

Xiao P, Liu W and Zhou H: miR-429 promotes the proliferation of non-small cell lung cancer cells via targeting DLC-1. Oncol Lett. 12:2163–2168. 2016. View Article : Google Scholar : PubMed/NCBI

37 

Erber R, Stöhr R, Herlein S, Giedl C, Rieker RJ, Fuchs F, Ficker JH, Hartmann A, Veltrup E, Wirtz RM, et al: Comparison of PD-L1 mRNA expression measured with the CheckPoint Typer® Assay with PD-L1 protein expression assessed with immunohistochemistry in non-small cell lung cancer. Anticancer Res. 37:6771–6778. 2017.PubMed/NCBI

38 

Sepesi B, Nelson DB, Mitchell KG, Gibbons DL, Heymach JV, Vaporciyan AA, Swisher SG and Roszik J: Prognostic value of PD-L1 mRNA sequencing expression profile in non-small cell lung cancer. Ann Thorac Surg. 105:1621–1626. 2018. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 17 Issue 6

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Grenda, A., Nicoś, M., Szczyrek, M., Krawczyk, P., Kucharczyk, T., Jarosz, B. ... Milanowski, J. (2019). MicroRNAs aid the assessment of programmed death ligand 1 expression in patients with non‑small cell lung cancer. Oncology Letters, 17, 5193-5200. https://doi.org/10.3892/ol.2019.10207
MLA
Grenda, A., Nicoś, M., Szczyrek, M., Krawczyk, P., Kucharczyk, T., Jarosz, B., Pankowski, J., Sawicki, M., Szumiło, J., Bukała, P., Milanowski, J."MicroRNAs aid the assessment of programmed death ligand 1 expression in patients with non‑small cell lung cancer". Oncology Letters 17.6 (2019): 5193-5200.
Chicago
Grenda, A., Nicoś, M., Szczyrek, M., Krawczyk, P., Kucharczyk, T., Jarosz, B., Pankowski, J., Sawicki, M., Szumiło, J., Bukała, P., Milanowski, J."MicroRNAs aid the assessment of programmed death ligand 1 expression in patients with non‑small cell lung cancer". Oncology Letters 17, no. 6 (2019): 5193-5200. https://doi.org/10.3892/ol.2019.10207