Open Access

Radiosensitizing effect of 5‑aminolevulinic acid in colorectal cancer in vitro and in vivo

  • Authors:
    • Kazuto Yamada
    • Yasutoshi Murayama
    • Yosuke Kamada
    • Tomohiro Arita
    • Toshiyuki Kosuga
    • Hirotaka Konishi
    • Ryo Morimura
    • Atsushi Shiozaki
    • Yoshiaki Kuriu
    • Hisashi Ikoma
    • Takeshi Kubota
    • Masayoshi Nakanishi
    • Hitoshi Fujiwara
    • Kazuma Okamoto
    • Eigo Otsuji
  • View Affiliations

  • Published online on: March 29, 2019     https://doi.org/10.3892/ol.2019.10198
  • Pages: 5132-5138
  • Copyright: © Yamada et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The radiosensitizing effect of 5‑aminolevulinic acid (5‑ALA) has been demonstrated in glioma and melanoma in a number of studies. Enhancing the radiosensitivity of colorectal cancer may improve survival rates and lessen adverse effects. The present study assessed the radiosensitizing effect of 5‑ALA in colorectal cancer using the human colon cancer cell line HT29 in vitro and in vivo. In vitro, cells were pretreated with 5‑ALA and exposed to ionizing radiation. Cells pretreated with or without 5‑ALA were compared using a colony formation assay. In vivo, HT29 cells were implanted into mice subcutaneously and subsequently exposed to ionizing radiation. 5‑ALA was administrated by intraperitoneal injection. Subcutaneous tumors treated with or without 5‑ALA were compared. Single‑dose and multi‑dose irradiations were applied both in vitro and in vivo. Cells exposed to multi‑dose irradiation and pretreated with 5‑ALA in vitro had a significantly lower surviving fraction compared with cells without 5‑ALA pretreatment. Following multi‑dose irradiation in vivo, the volume of the subcutaneous tumors treated with 5‑ALA was significantly lower compared with that of tumors without treatment. These results suggest that radiotherapy with 5‑ALA may enhance the therapeutic effect in colon cancer.

References

1 

Fitzmaurice C, Akinyemiju TF, Al Lami FH, Alam T, Alizadeh-Navaei R, Allen C, Alsharif U, Alvis-Guzman N, Amini E, Anderson BO, et al Global Burden of Disease Cancer Collaboration, : Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2016: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol. 4:1553–1568. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Watanabe T, Itabashi M, Shimada Y, Tanaka S, Ito Y, Ajioka Y, Hamaguchi T, Hyodo I, Igarashi M, Ishida H, et al: Foundation for Promotion of Cancer Research. Cancer Statics in Japan-2014. The Editorial Board of the Cancer Statics in Japan (eds.), . FPCR c/o National Cancer Center. (Tokyo). 1–114. 2015.

3 

Watanabe T, Itabashi M, Shimada Y, Tanaka S, Ito Y, Ajioka Y, Hamaguchi T, Hyodo I, Igarashi M, Ishida H, et al Japanese Society for Cancer of the Colon and Rectum, : Japanese Society for Cancer of the Colon and Rectum (JSCCR) Guidelines 2014 for treatment of colorectal cancer. Int J Clin Oncol. 20:207–239. 2015. View Article : Google Scholar : PubMed/NCBI

4 

Skibber JM, Hoff PM and Minsky BD: Cancer of the rectum. Cancer: Principles and Practice of Oncology (6th edition). Devita VT, Hellman S and Rosenberg SA: Lippincott, Williams and Wilkins. (Philadelphia). 1271–1318. 2001.

5 

Francois Y, Nemoz CJ, Baulieux J, Vignal J, Grandjean JP, Partensky C, Souquet JC, Adeleine P and Gerard JP: Influence of the interval between preoperative radiation therapy and surgery on downstaging and on the rate of sphincter-sparing surgery for rectal cancer: The Lyon R90-01 randomized trial. J Clin Oncol. 17:2396–2402. 1999. View Article : Google Scholar : PubMed/NCBI

6 

Wong CS, Cummings BJ, Brierley JD, Catton CN, McLean M, Catton P and Hao Y: Treatment of locally recurrent rectal carcinoma--results and prognostic factors. Int J Radiat Oncol Biol Phys. 40:427–435. 1998. View Article : Google Scholar : PubMed/NCBI

7 

Lingareddy V, Ahmad NR and Mohiuddin M: Palliative reirradiation for recurrent rectal cancer. Int J Radiat Oncol Biol Phys. 38:785–790. 1997. View Article : Google Scholar : PubMed/NCBI

8 

Cedermark B, Dahlberg M, Glimelius B, Påhlman L, Rutqvist LE and Wilking N; Swedish Rectal Cancer Trial, : Improved survival with preoperative radiotherapy in resectable rectal cancer. N Engl J Med. 336:980–987. 1997. View Article : Google Scholar : PubMed/NCBI

9 

Cammà C, Giunta M, Fiorica F, Pagliaro L, Craxì A and Cottone M: Preoperative radiotherapy for resectable rectal cancer: A meta-analysis. JAMA. 284:1008–1015. 2000. View Article : Google Scholar : PubMed/NCBI

10 

Colorectal Cancer Collaborative Group, : Adjuvant radiotherapy for rectal cancer: A systematic overview of 22 randomised trials involving 8507 patients. Lancet. 358:1291–1304. 2001. View Article : Google Scholar : PubMed/NCBI

11 

Kapiteijn E, Marijnen CA, Nagtegaal ID, Putter H, Steup WH, Wiggers T, Rutten HJ, Pahlman L, Glimelius B, van Krieken JH, et al Dutch Colorectal Cancer Group, : Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer. N Engl J Med. 345:638–646. 2001. View Article : Google Scholar : PubMed/NCBI

12 

Peeters KC, Marijnen CA, Nagtegaal ID, Kranenbarg EK, Putter H, Wiggers T, Rutten H, Pahlman L, Glimelius B, Leer JW, et al Dutch Colorectal Cancer Group, : The TME trial after a median follow-up of 6 years: Increased local control but no survival benefit in irradiated patients with resectable rectal carcinoma. Ann Surg. 246:693–701. 2007. View Article : Google Scholar : PubMed/NCBI

13 

van Gijn W, Marijnen CA, Nagtegaal ID, Kranenbarg EM, Putter H, Wiggers T, Rutten HJ, Påhlman L, Glimelius B and van de Velde CJ; Dutch Colorectal Cancer Group, : Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer: 12-year follow-up of the multicentre, randomised controlled TME trial. Lancet Oncol. 12:575–582. 2011. View Article : Google Scholar : PubMed/NCBI

14 

Kulka U, Schaffer M, Siefert A, Schaffer PM, Olsner A, Kasseb K, Hofstetter A, Dühmke E and Jori G: Photofrin as a radiosensitizer in an in vitro cell survival assay. Biochem Biophys Res Commun. 311:98–103. 2003. View Article : Google Scholar : PubMed/NCBI

15 

Marijnen CA, Kapiteijn E, van de Velde CJ, Martijn H, Steup WH, Wiggers T, Kranenbarg EK and Leer JW; Cooperative Investigators of the Dutch Colorectal Cancer Group, : Acute side effects and complications after short-term preoperative radiotherapy combined with total mesorectal excision in primary rectal cancer: Report of a multicenter randomized trial. J Clin Oncol. 20:817–825. 2002. View Article : Google Scholar : PubMed/NCBI

16 

Cox JD, Stetz J and Pajak TF: Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC). Int J Radiat Oncol Biol Phys. 31:1341–1346. 1995. View Article : Google Scholar : PubMed/NCBI

17 

Marijnen CA, van de Velde CJ, Putter H, van den Brink M, Maas CP, Martijn H, Rutten HJ, Wiggers T, Kranenbarg EK, Leer JW, et al: Impact of short-term preoperative radiotherapy on health-related quality of life and sexual functioning in primary rectal cancer: Report of a multicenter randomized trial. J Clin Oncol. 23:1847–1858. 2005. View Article : Google Scholar : PubMed/NCBI

18 

Peeters KC, van de Velde CJ, Leer JW, Martijn H, Junggeburt JM, Kranenbarg EK, Steup WH, Wiggers T, Rutten HJ and Marijnen CA: Late side effects of short-course preoperative radiotherapy combined with total mesorectal excision for rectal cancer: Increased bowel dysfunction in irradiated patients--a Dutch colorectal cancer group study. J Clin Oncol. 23:6199–6206. 2005. View Article : Google Scholar : PubMed/NCBI

19 

Ishizuka M, Abe F, Sano Y, Takahashi K, Inoue K, Nakajima M, Kohda T, Komatsu N, Ogura S and Tanaka T: Novel development of 5-aminolevurinic acid (ALA) in cancer diagnoses and therapy. Int Immunopharmacol. 11:358–365. 2011. View Article : Google Scholar : PubMed/NCBI

20 

Peng Q, Warloe T, Berg K, Moan J, Kongshaug M, Giercksky KE and Nesland JM: 5-Aminolevulinic acid-based photodynamic therapy. Clinical research and future challenges. Cancer. 79:2282–2308. 1997. View Article : Google Scholar : PubMed/NCBI

21 

Hagiya Y, Fukuhara H, Matsumoto K, Endo Y, Nakajima M, Tanaka T, Okura I, Kurabayashi A, Furihata M, Inoue K, et al: Expression levels of PEPT1 and ABCG2 play key roles in 5-aminolevulinic acid (ALA)-induced tumor-specific protoporphyrin IX (PpIX) accumulation in bladder cancer. Photodiagn Photodyn Ther. 10:288–295. 2013. View Article : Google Scholar

22 

Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J and Peng Q: Photodynamic therapy. J Natl Cancer Inst. 90:889–905. 1998. View Article : Google Scholar : PubMed/NCBI

23 

Utsuki S, Miyoshi N, Oka H, Miyajima Y, Shimizu S, Suzuki S and Fujii K: Fluorescence-guided resection of metastatic brain tumors using a 5-aminolevulinic acid-induced protoporphyrin IX: Pathological study. Brain Tumor Pathol. 24:53–55. 2007. View Article : Google Scholar : PubMed/NCBI

24 

Fukuhara H, Inoue K, Satake H, Tamura K, Karashima T, Yamasaki I, Tatsuo I, Kurabayashi A, Furihata M and Shuin T: Photodynamic diagnosis of positive margin during radical prostatectomy: Preliminary experience with 5-aminolevulinic acid. Int J Urol. 18:585–591. 2011. View Article : Google Scholar : PubMed/NCBI

25 

Mimura S, Ito Y, Nagayo T, Ichii M, Kato H, Sakai H, Goto K, Noguchi Y, Tanimura H, Nagai Y, et al: Cooperative clinical trial of photodynamic therapy with photofrin II and excimer dye laser for early gastric cancer. Lasers Surg Med. 19:168–172. 1996. View Article : Google Scholar : PubMed/NCBI

26 

Corti L, Toniolo L, Boso C, Colaut F, Fiore D, Muzzio PC, Koukourakis MI, Mazzarotto R, Pignataro M, Loreggian L, et al: Long-term survival of patients treated with photodynamic therapy for carcinoma in situ and early non-small-cell lung carcinoma. Lasers Surg Med. 39:394–402. 2007. View Article : Google Scholar : PubMed/NCBI

27 

Cao LQ, Xue P, Lu HW, Zheng Q, Wen ZL and Shao ZJ: Hematoporphyrin derivative-mediated photodynamic therapy inhibits tumor growth in human cholangiocarcinoma in vitro and in vivo. Hepatol Res. 39:1190–1197. 2009. View Article : Google Scholar : PubMed/NCBI

28 

Luksiene Z, Kalvelyte A and Supino R: On the combination of photodynamic therapy with ionizing radiation. J Photochem Photobiol B. 52:35–42. 1999. View Article : Google Scholar : PubMed/NCBI

29 

Schaffer M, Schaffer PM, Corti L, Gardiman M, Sotti G, Hofstetter A, Jori G and Dühmke E: Photofrin as a specific radiosensitizing agent for tumors: Studies in comparison to other porphyrins, in an experimental in vivo model. J Photochem Photobiol B. 66:157–164. 2002. View Article : Google Scholar : PubMed/NCBI

30 

Yamamoto J, Ogura S, Tanaka T, Kitagawa T, Nakano Y, Saito T, Takahashi M, Akiba D and Nishizawa S: Radiosensitizing effect of 5-aminolevulinic acid-induced protoporphyrin IX in glioma cells in vitro. Oncol Rep. 27:1748–1752. 2012.PubMed/NCBI

31 

Takahashi J, Misawa M, Murakami M, Mori T, Nomura K and Iwahashi H: 5-Aminolevulinic acid enhances cancer radiotherapy in a mouse tumor model. Springerplus. 2:6022013. View Article : Google Scholar : PubMed/NCBI

32 

Yamamoto J, Ogura S, Shimajiri S, Nakano Y, Akiba D, Kitagawa T, Ueta K, Tanaka T and Nishizawa S: 5-aminolevulinic acid-induced protoporphyrin IX with multi-dose ionizing irradiation enhances host antitumor response and strongly inhibits tumor growth in experimental glioma in vivo. Mol Med Rep. 11:1813–1819. 2015. View Article : Google Scholar : PubMed/NCBI

33 

Kitagawa T, Yamamoto J, Tanaka T, Nakano Y, Akiba D, Ueta K and Nishizawa S: 5-Aminolevulinic acid strongly enhances delayed intracellular production of reactive oxygen species (ROS) generated by ionizing irradiation: Quantitative analyses and visualization of intracellular ROS production in glioma cells in vitro. Oncol Rep. 33:583–590. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Capella MA and Capella LS: A light in multidrug resistance: Photodynamic treatment of multidrug-resistant tumors. J Biomed Sci. 10:361–366. 2003. View Article : Google Scholar : PubMed/NCBI

35 

Dolmans DE, Fukumura D and Jain RK: Photodynamic therapy for cancer. Nat Rev Cancer. 3:380–387. 2003. View Article : Google Scholar : PubMed/NCBI

36 

Vrouenraets MB, Visser GW, Snow GB and van Dongen GA: Basic principles, applications in oncology and improved selectivity of photodynamic therapy. Anticancer Res. 23((1B)): 505–522. 2003.PubMed/NCBI

37 

Hall EJ and Giaccia AJ: Physics and chemistry of radiation absorption. Radiobiology for the Radiologist (6th edition). Hall EJ and Giaccia AJ: Lippincott Williams & Wilkins. (Philadelphia, PA). 5–15. 2006.

38 

Hosokawa Y, Sakakura Y, Tanaka L, Okumura K, Yajima T and Kaneko M: Radiation-induced apoptosis is independent of caspase-8 but dependent on cytochrome c and the caspase-9 cascade in human leukemia HL60 cells. J Radiat Res (Tokyo). 46:293–303. 2005. View Article : Google Scholar

39 

Yamamoto J, Yamamoto S, Hirano T, Li S, Koide M, Kohno E, Okada M, Inenaga C, Tokuyama T, Yokota N, et al: Monitoring of singlet oxygen is useful for predicting the photodynamic effects in the treatment for experimental glioma. Clin Cancer Res. 12:7132–7139. 2006. View Article : Google Scholar : PubMed/NCBI

40 

Saenko Y, Cieslar-Pobuda A, Skonieczna M and Rzeszowska-Wolny J: Changes of reactive oxygen and nitrogen species and mitochondrial functioning in human K562 and HL60 cells exposed to ionizing radiation. Radiat Res. 180:360–366. 2013. View Article : Google Scholar : PubMed/NCBI

41 

Yamamori T, Yasui H, Yamazumi M, Wada Y, Nakamura Y, Nakamura H and Inanami O: Ionizing radiation induces mitochondrial reactive oxygen species production accompanied by upregulation of mitochondrial electron transport chain function and mitochondrial con-tent undercontrol of the cell cycle checkpoint. Free Radic Biol Med. 15;53(2): 260–70. 2012. View Article : Google Scholar

42 

Hino H, Murayama Y, Nakanishi M, Inoue K, Nakajima M and Otsuji E: 5-Aminolevulinic acid-mediated photodynamic therapy using light-emitting diodes of different wavelengths in a mouse model of peritoneally disseminated gastric cancer. J Surg Res. 185:119–126. 2013. View Article : Google Scholar : PubMed/NCBI

43 

Harris EER and Small W Jr: Intraoperative Radiotherapy for Breast Cancer. Front Oncol. 7:3172017. View Article : Google Scholar : PubMed/NCBI

44 

Shaw E, Scott C, Souhami L, Dinapoli R, Kline R, Loeffler J and Farnan N: Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: Final report of RTOG protocol 90–05. Int J Radiat Oncol Biol Phys. 47:291–298. 2000. View Article : Google Scholar : PubMed/NCBI

45 

Pajonk F, Vlashi E and McBride WH: Radiation resistance of cancer stem cells: The 4 R's of radiobiology revisited. Stem Cells. 28:639–648. 2010. View Article : Google Scholar : PubMed/NCBI

46 

Withers HR: The four R's of radiotherapy. Advances in radiation biology. Lett JTAH (ed). Academic Press. (New York). 1975. View Article : Google Scholar

Related Articles

Journal Cover

June 2019
Volume 17 Issue 6

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Yamada, K., Murayama, Y., Kamada, Y., Arita, T., Kosuga, T., Konishi, H. ... Otsuji, E. (2019). Radiosensitizing effect of 5‑aminolevulinic acid in colorectal cancer in vitro and in vivo. Oncology Letters, 17, 5132-5138. https://doi.org/10.3892/ol.2019.10198
MLA
Yamada, K., Murayama, Y., Kamada, Y., Arita, T., Kosuga, T., Konishi, H., Morimura, R., Shiozaki, A., Kuriu, Y., Ikoma, H., Kubota, T., Nakanishi, M., Fujiwara, H., Okamoto, K., Otsuji, E."Radiosensitizing effect of 5‑aminolevulinic acid in colorectal cancer in vitro and in vivo". Oncology Letters 17.6 (2019): 5132-5138.
Chicago
Yamada, K., Murayama, Y., Kamada, Y., Arita, T., Kosuga, T., Konishi, H., Morimura, R., Shiozaki, A., Kuriu, Y., Ikoma, H., Kubota, T., Nakanishi, M., Fujiwara, H., Okamoto, K., Otsuji, E."Radiosensitizing effect of 5‑aminolevulinic acid in colorectal cancer in vitro and in vivo". Oncology Letters 17, no. 6 (2019): 5132-5138. https://doi.org/10.3892/ol.2019.10198