Open Access

Overexpression of EPAC2 reduces the invasion of glioma cells via MMP‑2

  • Authors:
    • Ming Jiang
    • Yan Zhuang
    • Wang‑Cun Zu
    • Lei Jiao
    • Seidu A. Richard
    • Shiming Zhang
  • View Affiliations

  • Published online on: March 29, 2019     https://doi.org/10.3892/ol.2019.10200
  • Pages: 5080-5086
  • Copyright: © Jiang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Exchange proteins directly activated by cAMP (EPACs) are crucial cyclic adenosine 3',5'‑monophosphate‑​determined signaling pathway intercessors, which are associated with the pathogenesis of neurological disorders and numerous human diseases. To the best of our knowledge, the role of EPAC2 signaling via matrix metalloproteinase 2 (MMP‑2) in the pathogenesis of glioma has not been studied. Therefore, the present study focused on the role of EPAC2 in glioma, and assessed the invasiveness of human glioma cell lines following EPAC2 overexpression. Expression levels of EPAC2 in normal brain tissues and clinical glioma specimens were detected by western blotting. An EPAC2 overexpression vector was transfected into U251 and U87 cell lines to increase the expression levels of EPAC2. Expression levels of MMP‑2 were detected by western blotting, and the invasive abilities of glioma cells were detected by a Transwell assay. EPAC2 was relatively highly expressed in normal brain tissue, while EPAC2 expression was significantly decreased in clinical glioma specimens (P<0.01). In vitro transfection of EPAC2 overexpression vector significantly reduced the MMP‑2 protein levels of glioma cells, and, at the same time, the invasive cell number was significantly decreased in a Transwell assay. The present study demonstrated that MMP‑2 regulation via EPAC2 overexpression is a novel promising therapeutic route in malignant types of glioma.

References

1 

Ellison D, Love S, Chimelli L, Harding BN, Lowe JS, Vinter HV, Brandner S and Yong WH: Neuropathology. A reference text of CNS pathology. 3rd. Edinburgh: Elsevier/Mosby; 2013

2 

Seidu RA, Wu M, Su Z and Xu H: Paradoxical role of high mobility group box 1 in glioma: A suppressor or a promoter? Oncol Rev. 11:3252017. View Article : Google Scholar : PubMed/NCBI

3 

Osman MA: Phase II trial of temozolomide and reirradiation using conformal 3D-radiotherapy in recurrent brain gliomas. Ann Transl Med. 2:442014.PubMed/NCBI

4 

He J, Shan Z, Li L, Liu F, Liu Z, Song M and Zhu H: Expression of glioma stem cell marker CD133 and O6-methylguanine-DNA methyltransferase is associated with resistance to radiotherapy in gliomas. Oncol Rep. 26:1305–1313. 2011.PubMed/NCBI

5 

Short SC, Giampieri S, Worku M, Alcaide-German M, Sioftanos G, Bourne S, Lio KI, Shaked-Rabi M and Martindale C: Rad51 inhibition is an effective means of targeting DNA repair in glioma models and CD133+ tumor-derived cells. Neuro Oncol. 13:487–499. 2011. View Article : Google Scholar : PubMed/NCBI

6 

Sugawara K, Shibasaki T, Takahashi H and Seino S: Structure and functional roles of Epac2 (Rapgef4). Gene. 575:577–583. 2016. View Article : Google Scholar : PubMed/NCBI

7 

Bos JL: Epac proteins: Multi-purpose cAMP targets. Trends Biochem Sci. 31:680–686. 2006. View Article : Google Scholar : PubMed/NCBI

8 

Wang P, Liu Z, Chen H, Ye N, Cheng X and Zhou J: Exchange proteins directly activated by cAMP (EPACs): Emerging therapeutic targets. Bioorg Med Chem Lett. 27:1633–1639. 2017. View Article : Google Scholar : PubMed/NCBI

9 

Wild CT, Zhu Y, Na Y, Mei F, Ynalvez MA, Chen H, Cheng X and Zhou J: Functionalized N,N-diphenylamines as potent and selective EPAC2 inhibitors. ACS Med Chem Lett. 7:460–464. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Sugimoto N, Miwa S, Tsuchiya H, Hitomi Y, Nakamura H, Yachie A and Koizumi S: Targeted activation of PKA and Epac promotes glioblastoma regression in vitro. Mol Clin Oncol. 1:281–285. 2013. View Article : Google Scholar : PubMed/NCBI

11 

Kumar N, Prasad P, Jash E, Saini M, Husain A, Goldman A and Sehrawat S: Insights into exchange factor directly activated by cAMP (EPAC) as potential target for cancer treatment. Mol Cell Biochem. 447:77–92. 2018. View Article : Google Scholar : PubMed/NCBI

12 

Shchors K, Massaras A and Hanahan D: Dual targeting of the autophagic regulatory circuitry in gliomas with repurposed drugs elicits cell-lethal autophagy and therapeutic benefit. Cancer Cell. 28:456–471. 2015. View Article : Google Scholar : PubMed/NCBI

13 

Mostafavi H, Khaksarian M, Joghataei MT, Soleimani M, Hassanzadeh G, Eftekhari S, Soleimani M, Mousavizadeh K, Estiri H, Ahmadi S and Hadjighassem MR: Selective β2 adrenergic agonist increases Cx43 and miR-451 expression via cAMP-Epac. Mol Med Rep. 9:2405–2410. 2014. View Article : Google Scholar : PubMed/NCBI

14 

Malchinkhuu E, Sato K, Maehama T, Ishiuchi S, Yoshimoto Y, Mogi C, Kimura T, Kurose H, Tomura H and Okajima F: Role of Rap1B and tumor suppressor PTEN in the negative regulation of lysophosphatidic acid-induced migration by isoproterenol in glioma cells. Mol Biol Cell. 20:5156–5165. 2009. View Article : Google Scholar : PubMed/NCBI

15 

Yu CF, Chen FH, Lu MH, Hong JH and Chiang CS: Dual roles of tumour cells-derived matrix metalloproteinase 2 on brain tumour growth and invasion. Br J Cancer. 117:1828–1836. 2017. View Article : Google Scholar : PubMed/NCBI

16 

Richard SA, Sackey M, Su Z and Xu H: Pivotal neuroinflammatory and therapeutic role of high mobility group box 1 in ischemic stroke. Biosci Rep. 37(pii): BSR201711042017. View Article : Google Scholar : PubMed/NCBI

17 

Rosenberg GA: Matrix metalloproteinases in brain injury. J Neurotrauma. 12:833–842. 1995. View Article : Google Scholar : PubMed/NCBI

18 

Du R, Petritsch C, Lu K, Liu P, Haller A, Ganss R, Song H, Vandenberg S and Bergers G: Matrix metalloproteinase-2 regulates vascular patterning and growth affecting tumor cell survival and invasion in GBM. Neuro Oncol. 10:254–264. 2008. View Article : Google Scholar : PubMed/NCBI

19 

Zhou YH, Hess KR, Liu L, Linskey ME and Yung WA: Modeling prognosis for patients with malignant astrocytic gliomas: Quantifying the expression of multiple genetic markers and clinical variables. Neuro Oncol. 7:485–494. 2005. View Article : Google Scholar : PubMed/NCBI

20 

Seo H and Lee K: Epac2 contributes to PACAP-induced astrocytic differentiation through calcium ion influx in neural precursor cells. BMB Rep. 49:128–133. 2016. View Article : Google Scholar : PubMed/NCBI

21 

Gloerich M and Bos JL: Epac: Defining a new mechanism for cAMP action. Annu Rev Pharmacol Toxicol. 50:355–375. 2010. View Article : Google Scholar : PubMed/NCBI

22 

Grandoch M, Roscioni SS and Schmidt M: The role of Epac proteins, novel cAMP mediators, in the regulation of immune, lung and neuronal function. Br J Pharmacol. 159:265–284. 2010. View Article : Google Scholar : PubMed/NCBI

23 

Lee K, Kobayashi Y, Seo H, Kwak JH, Masuda A, Lim CS, Lee HR, Kang SJ, Park P, Sim SE, et al: Involvement of cAMP-guanine nucleotide exchange factor II in hippocampal long-term depression and behavioral flexibility. Mol Brain. 8:382015. View Article : Google Scholar : PubMed/NCBI

24 

Fernandes HB, Riordan S, Nomura T, Remmers CL, Kraniotis S, Marshall JJ, Kukreja L, Vassar R and Contractor A: Epac2 mediates cAMP-dependent potentiation of neurotransmission in the hippocampus. J Neurosci. 35:6544–6553. 2015. View Article : Google Scholar : PubMed/NCBI

25 

Cebolla B, Fernández-Pérez A, Perea G, Araque A and Vallejo M: DREAM mediates cAMP-dependent, Ca2+-induced stimulation of GFAP gene expression and regulates cortical astrogliogenesis. J Neurosci. 28:6703–6713. 2008. View Article : Google Scholar : PubMed/NCBI

26 

Guo P, Imanishi Y, Cackowski FC, Jarzynka MJ, Tao HQ, Nishikawa R, Hirose T, Hu B and Cheng SY: Up-regulation of angiopoietin-2, matrix metalloprotease-2, membrane type 1 metalloprotease, and laminin 5 gamma 2 correlates with the invasiveness of human glioma. Am J Pathol. 166:877–890. 2005. View Article : Google Scholar : PubMed/NCBI

27 

Wang M, Wang T, Liu S, Yoshida D and Teramoto A: The expression of matrix metalloproteinase-2 and-9 in human gliomas of different pathological grades. Brain Tumor Pathol. 20:65–72. 2003. View Article : Google Scholar : PubMed/NCBI

28 

Richard SA, Min W, Su Z and Xu HX: Epochal neuroinflammatory role of high mobility group box 1 in central nervous system diseases. AIMS Mol Sci. 4:185–218. 2017. View Article : Google Scholar

29 

Lampert K, Machein U, Machein MR, Conca W, Peter HH and Volk B: Expression of matrix metalloproteinases and their tissue inhibitors in human brain tumors. Am J Pathol. 153:429–437. 1998. View Article : Google Scholar : PubMed/NCBI

30 

Forsyth PA, Wong H, Laing TD, Rewcastle NB, Morris DG, Muzik H, Leco KJ, Johnston RN, Brasher PM, Sutherland G and Edwards DR: Gelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas. Br J Cancer. 79:1828–1835. 1999. View Article : Google Scholar : PubMed/NCBI

31 

Richard SA, Jiang Y, Xiang LH, Zhou S, Wang J, Su Z and Xu H: Post-translational modifications of high mobility group box 1 and cancer. Am J Transl Res. 9:5181–5196. 2017.PubMed/NCBI

32 

Vallejo M: PACAP signaling to DREAM: A cAMP-dependent pathway that regulates cortical astrogliogenesis. Mol Neurobiol. 39:90–100. 2009. View Article : Google Scholar : PubMed/NCBI

33 

Wang DD and Bordey A: The astrocyte odyssey. Progress in neurobiology. 86:342–67. 2008.PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 17 Issue 6

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Jiang, M., Zhuang, Y., Zu, W., Jiao, L., Richard, S.A., & Zhang, S. (2019). Overexpression of EPAC2 reduces the invasion of glioma cells via MMP‑2. Oncology Letters, 17, 5080-5086. https://doi.org/10.3892/ol.2019.10200
MLA
Jiang, M., Zhuang, Y., Zu, W., Jiao, L., Richard, S. A., Zhang, S."Overexpression of EPAC2 reduces the invasion of glioma cells via MMP‑2". Oncology Letters 17.6 (2019): 5080-5086.
Chicago
Jiang, M., Zhuang, Y., Zu, W., Jiao, L., Richard, S. A., Zhang, S."Overexpression of EPAC2 reduces the invasion of glioma cells via MMP‑2". Oncology Letters 17, no. 6 (2019): 5080-5086. https://doi.org/10.3892/ol.2019.10200