Open Access

TUSC3 as a potential biomarker for prognosis in clear cell renal cell carcinoma

  • Authors:
    • Youji Yan
    • Zhongjun Chen
    • Yixiang Liao
    • Jiajie Zhou
  • View Affiliations

  • Published online on: March 19, 2019     https://doi.org/10.3892/ol.2019.10161
  • Pages: 5073-5079
  • Copyright: © Yan et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The aim of the present study was to explore the expression levels of tumor suppressor candidate 3 (TUSC3) in human clear cell renal cell carcinoma (ccRCC) and its clinical value. Immunohistochemical staining, western blotting and reverse transcription‑quantitative polymerase chain reaction were used to detect TUSC3 expression in paracancerous normal tissues and ccRCC tissues. The tissues were derived from the pathological specimens of 54 patients with ccRCC. Additionally, associations among TUSC3 expression and histological grade and clinicopathological staging of ccRCC were investigated. The results of these comparisons revealed that TUSC3 expression in ccRCC tissues was significantly lower than that in paracancerous tissues (P<0.05). TUSC3 expression in the high differentiation group was higher than that in the median and low differentiation groups (P<0.05). Expression levels of TUSC3 in stage I and II tissues were higher than those in stage III and IV tissues (P<0.05). The expression levels of TUSC3 in the lymph node metastasis group were lower than those in the non‑lymph node metastasis group (P<0.05). In conclusion, the expression levels of TUSC3 in human ccRCC tissues were downregulated compared with those found in normal human renal tissue, and TUSC3 may inhibit the progression of ccRCC. Furthermore, the TUSC3 gene may be used as a promising tumor marker for the early diagnosis and prognosis of ccRCC.

References

1 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2018. CA Cancer J Clin. 68:7–30. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Barata PC and Rini BI: Treatment of renal cell carcinoma: Current status and future directions. CA Cancer J Clin. 67:507–524. 2017. View Article : Google Scholar : PubMed/NCBI

4 

Cavaliere C, D'Aniello C, Pepa CD, Pisconti S, Berretta M and Facchini G: Current and emerging treatments for metastatic renal cell carcinoma. Curr Cancer Drug Targets. 18:468–479. 2018. View Article : Google Scholar : PubMed/NCBI

5 

Miao D, Margolis CA, Gao W, Voss MH, Li W, Martini DJ, Norton C, Bossé D, Wankowicz SM, Cullen D, et al: Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science. 359:801–806. 2018. View Article : Google Scholar : PubMed/NCBI

6 

Zhai W, Ma J, Zhu R, Xu C, Zhang J, Chen Y, Chen Z, Gong D, Zheng J, Chen C, et al: MiR-532-5p suppresses renal cancer cell proliferation by disrupting the ETS1-mediated positive feedback loop with the KRAS-NAP1L1/P-ERK axis. Br J Cancer. 119:591–604. 2018. View Article : Google Scholar : PubMed/NCBI

7 

Liu KG, Gupta S and Goel S: Immunotherapy: Incorporation in the evolving paradigm of renal cancer management and future prospects. Oncotarget. 8:17313–17327. 2017.PubMed/NCBI

8 

Du Y, Pahernik S, Hadaschik B, Teber D, Duensing S, Jäger D, Hohenfellner M and Grüllich C: Survival and prognostic factors of patients with renal cell cancer with bone metastasis in the era of targeted therapy: A single-institution analysis. Urol Oncol. 34:433.e1–e8. 2016. View Article : Google Scholar

9 

Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Siebels M, Negrier S, Chevreau C, Solska E, Desai AA, et al: Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med. 356:125–134. 2007. View Article : Google Scholar : PubMed/NCBI

10 

Ridge CA, Pua BB and Madoff DC: Epidemiology and staging of renal cell carcinoma. Semin Intervent Radiol. 31:3–8. 2014. View Article : Google Scholar : PubMed/NCBI

11 

Vašíčková K, Horak P and Vaňhara P: TUSC3: Functional duality of a cancer gene. Cell Mol Life Sci. 75:849–857. 2018. View Article : Google Scholar : PubMed/NCBI

12 

Fan X, Zhang X, Shen J, Zhao H, Yu X, Chen Y, Zhuang Z, Deng X, Feng H, Wang Y and Peng L: Decreased TUSC3 promotes pancreatic cancer proliferation, invasion and metastasis. PLoS One. 11:e01490282016. View Article : Google Scholar : PubMed/NCBI

13 

Zhu YF and Dong M: Expression of TUSC3 and its prognostic significance in colorectal cancer. Pathol Res Pract. 214:1497–1503. 2018. View Article : Google Scholar : PubMed/NCBI

14 

Birnbaum DJ, Adélaïde J, Mamessier E, Finetti P, Lagarde A, Monges G, Viret F, Gonçalvès A, Turrini O, Delpero JR, et al: Genome profiling of pancreatic adenocarcinoma. Genes Chromosomes Cancer. 50:456–465. 2011. View Article : Google Scholar : PubMed/NCBI

15 

Arbieva ZH, Banerjee K, Kim SY, Edassery SL, Maniatis VS, Horrigan SK and Westbrook CA: High-resolution physical map and transcript identification of a prostate cancer deletion interval on 8p22. Genome Res. 10:244–257. 2000. View Article : Google Scholar : PubMed/NCBI

16 

Mohorko E, Glockshuber R and Aebi M: Oligosaccharyltrans-ferase: The central enzyme of N-linked protein glycosylation. J Inherit Metab Dis. 34:869–878. 2011. View Article : Google Scholar : PubMed/NCBI

17 

Peng Y, Cao J, Yao XY, Wang JX, Zhong MZ, Gan PP and Li JH: TUSC3 induces autophagy in human non-small cell lung cancer cells through Wnt/beta-catenin signaling. Oncotarget. 8:52960–52974. 2017.PubMed/NCBI

18 

Liu K, Xie F, Gao A, Zhang R, Zhang L, Xiao Z, Hu Q, Huang W, Huang Q, Lin B, et al: SOX2 regulates multiple malignant processes of breast cancer development through the SOX2/miR-181a-5p, miR-30e-5p/TUSC3 axis. Mol Cancer. 16:622017. View Article : Google Scholar : PubMed/NCBI

19 

Amin MB and Edge SB: American Joint Committee on Cancer. AJCC cancer staging manual. Eighth. Switzerland: Springer; 2017, View Article : Google Scholar

20 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

21 

Hirata H, Hinoda Y, Ueno K, Majid S, Saini S and Dahiya R: Role of secreted frizzled-related protein 3 in human renal cell carcinoma. Cancer Res. 70:1896–1905. 2010. View Article : Google Scholar : PubMed/NCBI

22 

Tan X, Liu Y, Hou J and Cao G: Targeted therapies for renal cell carcinoma in Chinese patients: Focus on everolimus. Onco Targets Ther. 8:313–321. 2015.PubMed/NCBI

23 

Pei X, Li M, Zhan J, Yu Y, Wei X, Guan L, Aydin H, Elson P, Zhou M, He H and Zhang H: Enhanced IMP3 expression activates NF-κB pathway and promotes renal cell carcinoma progression. PLoS One. 10:e01243382015. View Article : Google Scholar : PubMed/NCBI

24 

Sanchez-Gastaldo A, Kempf E, González Del Alba A and Duran I: Systemic treatment of renal cell cancer: A comprehensive review. Cancer Treat Rev. 60:77–89. 2017. View Article : Google Scholar : PubMed/NCBI

25 

Miao J, Wang L, Zhu M, Xiao W, Wu H, Di M, Huang Y, Huang S, Han F, Deng X, et al: Long-term survival and late toxicities of elderly nasopharyngeal carcinoma (NPC) patients treated by high-total- and fractionated-dose simultaneous modulated accelerated radiotherapy with or without chemotherapy. Oral Oncol. 89:40–47. 2019. View Article : Google Scholar : PubMed/NCBI

26 

Zheng R, Lian S, Huang X, Guan G, Li X, Chi P and Xu B: The survival benefit of intensified full-dose XELOX chemotherapy concomitant to radiotherapy and then resting-period consolidation chemotherapy in locally advanced rectal cancer. J Cancer. 10:730–736. 2019. View Article : Google Scholar : PubMed/NCBI

27 

Xie J, Lin W, Huang L, Xu N, Xu A, Chen B, Watanabe M, Liu C and Huang P: Bufalin suppresses the proliferation and metastasis of renal cell carcinoma by inhibiting the PI3K/Akt/mTOR signaling pathway. Oncol Lett. 16:3867–3873. 2018.PubMed/NCBI

28 

Chandrasekar T, Klaassen Z, Goldberg H, Kulkarni GS, Hamilton RJ and Fleshner NE: Metastatic renal cell carcinoma: Patterns and predictors of metastases-A contemporary population-based series. Urol Oncol. 35:661.e7–661.e14. 2017. View Article : Google Scholar

29 

Melkonian SC, Daniel CR, Ye Y, Tannir NM, Karam JA, Matin SF, Wood CG and Wu X: Gene-environment interaction of genome-wide association study-identified susceptibility loci and meat-cooking mutagens in the etiology of renal cell carcinoma. Cancer. 122:108–115. 2016. View Article : Google Scholar : PubMed/NCBI

30 

Deckers IA, van den Brandt PA, van Engeland M, van Schooten FJ, Godschalk RW, Keszei AP, Hogervorst JG and Schouten LJ: Potential role of gene-environment interactions in ion transport mechanisms in the etiology of renal cell cancer. Sci Rep. 6:342622016. View Article : Google Scholar : PubMed/NCBI

31 

Zhang MJ, Xing LX, Cui M, Yang X, Shi JG, Li J, Zhang KJ, Zheng ZJ, Zhang FC, Li JL and Gao XC: Association of TUSC3 gene polymorphisms with non-syndromic mental retardation based on nuclear families in the Qinba mountain area of China. Genet Mol Res. 14:5022–5030. 2015. View Article : Google Scholar : PubMed/NCBI

32 

Molinari F, Foulquier F, Tarpey PS, Morelle W, Boissel S, Teague J, Edkins S, Futreal PA, Stratton MR, Turner G, et al: Oligosaccharyltransferase-subunit mutations in nonsyndromic mental retardation. Am J Hum Genet. 82:1150–1157. 2008. View Article : Google Scholar : PubMed/NCBI

33 

Mohorko E, Owen RL, Malojčić G, Brozzo MS, Aebi M and Glockshuber R: Structural basis of substrate specificity of human oligosaccharyl transferase subunit N33/Tusc3 and its role in regulating protein N-glycosylation. Structure. 22:590–601. 2014. View Article : Google Scholar : PubMed/NCBI

34 

Vandewynckel YP, Laukens D, Geerts A, Bogaerts E, Paridaens A, Verhelst X, Janssens S, Heindryckx F and Van Vlierberghe H: The paradox of the unfolded protein response in cancer. Anticancer Res. 33:4683–4694. 2013.PubMed/NCBI

35 

Zhou H and Clapham DE: Mammalian MagT1 and TUSC3 are required for cellular magnesium uptake and vertebrate embryonic development. Proc Natl Acad Sci USA. 106:15750–15755. 2009. View Article : Google Scholar : PubMed/NCBI

36 

PLOS ONE: Staff: Correction: Decreased TUSC3 promotes pancreatic cancer proliferation, invasion and metastasis. PLoS One. 11:e01517522016. View Article : Google Scholar : PubMed/NCBI

37 

Pils D, Horak P, Vanhara P, Anees M, Petz M, Alfanz A, Gugerell A, Wittinger M, Gleiss A, Auner V, et al: Methylation status of TUSC3 is a prognostic factor in ovarian cancer. Cancer. 119:946–954. 2013. View Article : Google Scholar : PubMed/NCBI

38 

Luo J, Zhu H, Jiang H, Cui Y, Wang M, Ni X and Ma C: The effects of aberrant expression of LncRNA DGCR5/miR-873-5p/TUSC3 in lung cancer cell progression. Cancer Med. 2018. View Article : Google Scholar

39 

Feng S, Zhai J, Lu D, Lin J, Dong X, Liu X, Wu H, Roden AC, Brandi G, Tavolari S, et al: TUSC3 accelerates cancer growth and induces epithelial-mesenchymal transition by upregulating claudin-1 in non-small-cell lung cancer cells. Exp Cell Res. 373:44–56. 2018. View Article : Google Scholar : PubMed/NCBI

40 

Horak P, Tomasich E, Vaňhara P, Kratochvílová K, Anees M, Marhold M, Lemberger CE, Gerschpacher M, Horvat R, Sibilia M, et al: TUSC3 loss alters the ER stress response and accelerates prostate cancer growth in vivo. Sci Rep. 4:37392014. View Article : Google Scholar : PubMed/NCBI

41 

Gu Y, Pei X, Ren Y, Cai K, Guo K, Chen J, Qin W, Lin M, Wang Q, Tang N, et al: Oncogenic function of TUSC3 in non-small cell lung cancer is associated with Hedgehog signalling pathway. Biochim Biophys Acta Mol Basis Dis. 1863:1749–1760. 2017. View Article : Google Scholar : PubMed/NCBI

42 

Kratochvílová K, Horak P, Ešner M, Souček K, Pils D, Anees M, Tomasich E, Dráfi F, Jurtíková V, Hampl A, et al: Tumor suppressor candidate 3 (TUSC3) prevents the epithelial-to-mesenchymal transition and inhibits tumor growth by modulating the endoplasmic reticulum stress response in ovarian cancer cells. Int J Cancer. 137:1330–1340. 2015. View Article : Google Scholar : PubMed/NCBI

43 

Duppel U, Woenckhaus M, Schulz C, Merk J and Dietmaier W: Quantitative detection of TUSC3 promoter methylation-a potential biomarker for prognosis in lung cancer. Oncol Lett. 12:3004–3012. 2017. View Article : Google Scholar

44 

Gu Y, Wang Q, Guo K, Qin W, Liao W, Wang S, Ding Y and Lin J: TUSC3 promotes colorectal cancer progression and epithelial-mesenchymal transition (EMT) through WNT/β-catenin and MAPK signalling. J Pathol. 239:60–71. 2016. View Article : Google Scholar : PubMed/NCBI

45 

Bova GS, Carter BS, Bussemakers MJ, Emi M, Fujiwara Y, Kyprianou N, Jacobs SC, Robinson JC, Epstein JI, Walsh PC, et al: Homozygous deletion and frequent allelic loss of chromosome 8p22 loci in human prostate cancer. Cancer Res. 53:3869–3873. 1973.

46 

Vaňhara P, Horak P, Pils D, Anees M, Petz M, Gregor W, Zeillinger R and Krainer M: Loss of the oligosaccharyl transferase subunit TUSC3 promotes proliferation and migration of ovarian cancer cells. Int J Oncol. 42:1383–1389. 2013. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 17 Issue 6

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Yan, Y., Chen, Z., Liao, Y., & Zhou, J. (2019). TUSC3 as a potential biomarker for prognosis in clear cell renal cell carcinoma . Oncology Letters, 17, 5073-5079. https://doi.org/10.3892/ol.2019.10161
MLA
Yan, Y., Chen, Z., Liao, Y., Zhou, J."TUSC3 as a potential biomarker for prognosis in clear cell renal cell carcinoma ". Oncology Letters 17.6 (2019): 5073-5079.
Chicago
Yan, Y., Chen, Z., Liao, Y., Zhou, J."TUSC3 as a potential biomarker for prognosis in clear cell renal cell carcinoma ". Oncology Letters 17, no. 6 (2019): 5073-5079. https://doi.org/10.3892/ol.2019.10161