Open Access

Identification of a 13‑gene‑based classifier as a potential biomarker to predict the effects of fluorouracil‑based chemotherapy in colorectal cancer

  • Authors:
    • Zuhuan Gan
    • Qiyuan Zou
    • Yan Lin
    • Zihai Xu
    • Zhong Huang
    • Zhichao Chen
    • Yufeng Lv
  • View Affiliations

  • Published online on: March 19, 2019     https://doi.org/10.3892/ol.2019.10159
  • Pages: 5057-5063
  • Copyright: © Gan et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The aim of the current study was to develop a predictor classifier for response to fluorouracil‑based chemotherapy in patients with advanced colorectal cancer (CRC) using microarray gene expression profiles of primary CRC tissues. Using two expression profiles downloaded from the Gene Expression Omnibus database, differentially expressed genes (DEGs) between responders and non‑responders to fluorouracil‑based chemotherapy were identified. A total of 791 DEGs, including 303 that were upregulated and 488 that were downregulated in responders, were identified. Functional enrichment analysis revealed that the DEGs were primarily involved in ‘cell mitosis’, ‘DNA replication’ and ‘cell cycle’ signaling pathways. Following feature selection using two methods, a random forest classifier for response to fluorouracil‑based chemotherapy with 13 DEGs was constructed. The accuracy of the 13‑gene classifier was 0.930 in the training set and 0.810 in the validation set. The receiver operating characteristic curve analysis revealed that the area under the curve was 1.000 in the training set and 0.873 in the validation set (P=0.227). The 13‑gene‑based classifier described in the current study may be used as a potential biomarker to predict the effects of fluorouracil‑based chemotherapy in patients with CRC.

References

1 

Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Van Cutsem E, Cervantes A, Nordlinger B and Arnold D; ESMO Guidelines Working Group, : Metastatic colorectal cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 25 Suppl 3:iii1–iii9. 2014. View Article : Google Scholar : PubMed/NCBI

3 

Brenner H, Kloor M and Pox CP: Colorectal cancer. Lancet. 383:1490–1502. 2014. View Article : Google Scholar : PubMed/NCBI

4 

de Gramont A, Bosset JF, Milan C, Rougier P, Bouché O, Etienne PL, Morvan F, Louvet C, Guillot T, François E and Bedenne L: Randomized trial comparing monthly low-dose leucovorin and fluorouracil bolus with bimonthly high-dose leucovorin and fluorouracil bolus plus continuous infusion for advanced colorectal cancer: A French intergroup study. J Clin Oncol. 15:808–815. 1997. View Article : Google Scholar : PubMed/NCBI

5 

Goldberg RM, Sargent DJ, Morton RF, Fuchs CS, Ramanathan RK, Williamson SK, Findlay BP, Pitot HC and Alberts SR: A randomized controlled trial of fluorouracil plus leucovorin, irinotecan, and oxaliplatin combinations in patients with previously untreated metastatic colorectal cancer. J Clin Oncol. 22:23–30. 2004. View Article : Google Scholar : PubMed/NCBI

6 

Tournigand C, André T, Achille E, Lledo G, Flesh M, Mery-Mignard D, Quinaux E, Couteau C, Buyse M, Ganem G, et al: FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal cancer: A randomized GERCOR study. J Clin Oncol. 22:229–237. 2004. View Article : Google Scholar : PubMed/NCBI

7 

Yamazaki K, Nagase M, Tamagawa H, Ueda S, Tamura T, Murata K, Eguchi Nakajima T, Baba E, Tsuda M, Moriwaki T, et al: Randomized phase III study of bevacizumab plus FOLFIRI and bevacizumab plus mFOLFOX6 as first-line treatment for patients with metastatic colorectal cancer (WJOG4407G). Ann Oncol. 27:1539–1546. 2016. View Article : Google Scholar : PubMed/NCBI

8 

Petrelli F, Borgonovo K, Cabiddu M, Ghilardi M, Lonati V, Maspero F, Sauta MG, Beretta GD and Barni S: FOLFIRI-bevacizumab as first-line chemotherapy in 3500 patients with advanced colorectal cancer: A pooled analysis of 29 published trials. Clin Colorectal Cancer. 12:145–151. 2013. View Article : Google Scholar : PubMed/NCBI

9 

Saltz LB, Clarke S, Díaz-Rubio E, Scheithauer W, Figer A, Wong R, Koski S, Lichinitser M, Yang TS, Rivera F, et al: Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: A randomized phase III study. J Clin Oncol. 26:2013–2019. 2008. View Article : Google Scholar : PubMed/NCBI

10 

Wang Y, Jatkoe T, Zhang Y, Mutch MG, Talantov D, Jiang J, McLeod HL and Atkins D: Gene expression profiles and molecular markers to predict recurrence of Dukes' B colon cancer. J Clin Oncol. 22:1564–1571. 2004. View Article : Google Scholar : PubMed/NCBI

11 

Eschrich S, Yang I, Bloom G, Kwong KY, Boulware D, Cantor A, Coppola D, Kruhøffer M, Aaltonen L, Orntoft TF, et al: Molecular staging for survival prediction of colorectal cancer patients. J Clin Oncol. 23:3526–3535. 2005. View Article : Google Scholar : PubMed/NCBI

12 

Notterman DA, Alon U, Sierk AJ and Levine AJ: Transcriptional gene expression profiles of colorectal adenoma, adenocarcinoma, and normal tissue examined by oligonucleotide arrays. Cancer Res. 61:3124–3130. 2001.PubMed/NCBI

13 

Wen WH, Bernstein L, Lescallett J, Beazer-Barclay Y, Sullivan-Halley J, White M and Press MF: Comparison of TP53 mutations identified by oligonucleotide microarray and conventional DNA sequence analysis. Cancer Res. 60:2716–2722. 2000.PubMed/NCBI

14 

Iwao-Koizumi K, Matoba R, Ueno N, Kim SJ, Ando A, Miyoshi Y, Maeda E, Noguchi S and Kato K: Prediction of docetaxel response in human breast cancer by gene expression profiling. J Clin Oncol. 23:422–431. 2005. View Article : Google Scholar : PubMed/NCBI

15 

Del Rio M, Molina F, Bascoul-Mollevi C, Copois V, Bibeau F, Chalbos P, Bareil C, Kramar A, Salvetat N, Fraslon C, et al: Gene expression signature in advanced colorectal cancer patients select drugs and response for the use of leucovorin, fluorouracil, and irinotecan. J Clin Oncol. 25:773–780. 2007. View Article : Google Scholar : PubMed/NCBI

16 

Estevez-Garcia P, Rivera F, Molina-Pinelo S, Benavent M, Gómez J, Limón ML, Pastor MD, Martinez-Perez J, Paz-Ares L, Carnero A and Garcia-Carbonero R: Gene expression profile predictive of response to chemotherapy in metastatic colorectal cancer. Oncotarget. 6:6151–6159. 2015. View Article : Google Scholar : PubMed/NCBI

17 

Li S, Lu X, Chi P and Pan J: Identification of HOXB8 and KLK11 expression levels as potential biomarkers to predict the effects of FOLFOX4 chemotherapy. Future Oncol. 9:727–736. 2013. View Article : Google Scholar : PubMed/NCBI

18 

Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van Glabbeke M, van Oosterom AT, Christian MC and Gwyther SG: New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 92:205–216. 2000. View Article : Google Scholar : PubMed/NCBI

19 

Miller AB, Hoogstraten B, Staquet M and Winkler A: Reporting results of cancer treatment. Cancer. 47:207–214. 1981. View Article : Google Scholar : PubMed/NCBI

20 

Aras M, Erdil TY, Dane F, Gungor S, Ones T, Dede F, Inanir S and Turoglu HT: Comparison of WHO RECIST 1.1, EORTC, and PERCIST criteria in the evaluation of treatment response in malignant solid tumors. Nucl Med Commun. 37:9–15. 2016.PubMed/NCBI

21 

Khokher S, Qureshi MU and Chaudhry NA: Comparison of WHO and RECIST criteria for evaluation of clinical response to chemotherapy in patients with advanced breast cancer. Asian Pac J Cancer Prev. 13:3213–3218. 2012. View Article : Google Scholar : PubMed/NCBI

22 

Choi JH, Ahn MJ, Rhim HC, Kim JW, Lee GH, Lee YY and Kim IS: Comparison of WHO and RECIST criteria for response in metastatic colorectal carcinoma. Cancer Res Treat. 37:290–293. 2005. View Article : Google Scholar : PubMed/NCBI

23 

Park JO, Lee SI, Song SY, Kim K, Kim WS, Jung CW, Park YS, Im YH, Kang WK, Lee MH, et al: Measuring response in solid tumors: Comparison of RECIST and WHO response criteria. Jpn J Clin Oncol. 33:533–537. 2003. View Article : Google Scholar : PubMed/NCBI

24 

Gautier L, Cope L, Bolstad BM and Irizarry RA: affy-analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. 20:307–315. 2004. View Article : Google Scholar : PubMed/NCBI

25 

Leek JT, Johnson WE, Parker HS, Jaffe AE and Storey JD: The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 28:882–883. 2012. View Article : Google Scholar : PubMed/NCBI

26 

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W and Smyth GK: limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43:e472015. View Article : Google Scholar : PubMed/NCBI

27 

Yu G, Wang LG, Han Y and He QY: clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS. 16:284–287. 2012. View Article : Google Scholar : PubMed/NCBI

28 

Wu TT, Chen YF, Hastie T, Sobel E and Lange K: Genome-wide association analysis by lasso penalized logistic regression. Bioinformatics. 25:714–721. 2009. View Article : Google Scholar : PubMed/NCBI

29 

Cuyle PJ and Prenen H: Current and future biomarkers in the treatment of colorectal cancer. Acta Clin Belg. 72:103–115. 2017. View Article : Google Scholar : PubMed/NCBI

30 

Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC and Müller M: pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 12:772011. View Article : Google Scholar : PubMed/NCBI

31 

Stintzing S: Personalized treatment for colorectal carcinomas. Dtsch Med Wochenschr. 142:1652–1659. 2017.(In German). PubMed/NCBI

32 

Gustavsson B, Carlsson G, Machover D, Petrelli N, Roth A, Schmoll HJ, Tveit KM and Gibson F: A review of the evolution of systemic chemotherapy in the management of colorectal cancer. Clin Colorectal Cancer. 14:1–10. 2015. View Article : Google Scholar : PubMed/NCBI

33 

Iwamoto S, Takahashi T, Tamagawa H, Nakamura M, Munemoto Y, Kato T, Hata T, Denda T, Morita Y, Inukai M, et al: FOLFIRI plus bevacizumab as second-line therapy in patients with metastatic colorectal cancer after first-line bevacizumab plus oxaliplatin-based therapy: The randomized phase III EAGLE study. Ann Oncol. 26:1427–1433. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Bazarbashi S, Aljubran A, Alzahrani A, Mohieldin A, Soudy H and Shoukri M: Phase I/II trial of capecitabine, oxaliplatin, and irinotecan in combination with bevacizumab in first line treatment of metastatic colorectal cancer. Cancer Med. 4:1505–1513. 2015. View Article : Google Scholar : PubMed/NCBI

35 

Heinemann V, von Weikersthal LF, Decker T, Kiani A, Vehling-Kaiser U, Al-Batran SE, Heintges T, Lerchenmüller C, Kahl C, Seipelt G, et al: FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): A randomised, open-label, phase 3 trial. Lancet Oncol. 15:1065–1075. 2014. View Article : Google Scholar : PubMed/NCBI

36 

Stremitzer S, Sebio A, Stintzing S and Lenz HJ: Panitumumab safety for treating colorectal cancer. Expert Opin Drug Saf. 13:843–851. 2014.PubMed/NCBI

37 

Saridaki Z, Souglakos J and Georgoulias V: Prognostic and predictive significance of MSI in stages II/III colon cancer. World J Gastroenterol. 20:6809–6814. 2014. View Article : Google Scholar : PubMed/NCBI

38 

Webber EM, Kauffman TL, O'Connor E and Goddard KA: Systematic review of the predictive effect of MSI status in colorectal cancer patients undergoing 5FU-based chemotherapy. BMC Cancer. 15:1562015. View Article : Google Scholar : PubMed/NCBI

39 

Nakanishi R, Kitao H, Fujinaka Y, Yamashita N, Iimori M, Tokunaga E, Yamashita N, Morita M, Kakeji Y and Maehara Y: FANCJ expression predicts the response to 5-fluorouracil-based chemotherapy in MLH1-proficient colorectal cancer. Ann Surg Oncol. 19:3627–3635. 2012. View Article : Google Scholar : PubMed/NCBI

40 

Simmer F, Venderbosch S, Dijkstra JR, Vink-Börger EM, Faber C, Mekenkamp LJ, Koopman M, De Haan AF, Punt CJ and Nagtegaal ID: MicroRNA-143 is a putative predictive factor for the response to fluoropyrimidine-based chemotherapy in patients with metastatic colorectal cancer. Oncotarget. 6:22996–23007. 2015. View Article : Google Scholar : PubMed/NCBI

41 

Molina-Pinelo S, Carnero A, Rivera F, Estevez-Garcia P, Bozada JM, Limon ML, Benavent M, Gomez J, Pastor MD, Chaves M, et al: MiR-107 and miR-99a-3p predict chemotherapy response in patients with advanced colorectal cancer. BMC Cancer. 14:6562014. View Article : Google Scholar : PubMed/NCBI

42 

Candy PA, Phillips MR, Redfern AD, Colley SM, Davidson JA, Stuart LM, Wood BA, Zeps N and Leedman PJ: Notch-induced transcription factors are predictive of survival and 5-fluorouracil response in colorectal cancer patients. Br J Cancer. 109:1023–1030. 2013. View Article : Google Scholar : PubMed/NCBI

43 

Mariadason JM, Arango D, Shi Q, Wilson AJ, Corner GA, Nicholas C, Aranes MJ, Lesser M, Schwartz EL and Augenlicht LH: Gene expression profiling-based prediction of response of colon carcinoma cells to 5-fluorouracil and camptothecin. Cancer Res. 63:8791–8812. 2003.PubMed/NCBI

44 

Kursa MB and Rudnicki WR: Feature selection with the boruta package. J Stat Soft. 36:1–13. 2010. View Article : Google Scholar

45 

Zhang Z and Huang J: Intestinal stem cells-types and markers. Cell Biol Int. 37:406–414. 2013. View Article : Google Scholar : PubMed/NCBI

46 

Chang EY, Tsai SH, Shun CT, Hee SW, Chang YC, Tsai YC, Tsai JS, Chen HJ, Chou JW, Lin SY and Chuang LM: Prostaglandin reductase 2 modulates ROS-mediated cell death and tumor transformation of gastric cancer cells and is associated with higher mortality in gastric cancer patients. Am J Pathol. 181:1316–1326. 2012. View Article : Google Scholar : PubMed/NCBI

47 

Li FF, Yan P, Zhao ZX, Liu Z, Song DW, Zhao XW, Wang XS, Wang GY and Liu SL: Polymorphisms in the CHIT1 gene: Associations with colorectal cancer. Oncotarget. 7:39572–39581. 2016.PubMed/NCBI

48 

Chang YT, Yeh YS, Ma CJ, Huang CW, Tsai HL, Huang MY, Cheng TL and Wang JY: Optimization of a multigene biochip for detection of relapsed and early relapsed colorectal cancer. J Surg Res. 220:427–437. 2017. View Article : Google Scholar : PubMed/NCBI

49 

Jun S, Jung YS, Suh HN, Wang W, Kim MJ, Oh YS, Lien EM, Shen X, Matsumoto Y, McCrea PD, et al: LIG4 mediates Wnt signalling-induced radioresistance. Nat Commun. 7:109942016. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 17 Issue 6

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Gan, Z., Zou, Q., Lin, Y., Xu, Z., Huang, Z., Chen, Z., & Lv, Y. (2019). Identification of a 13‑gene‑based classifier as a potential biomarker to predict the effects of fluorouracil‑based chemotherapy in colorectal cancer. Oncology Letters, 17, 5057-5063. https://doi.org/10.3892/ol.2019.10159
MLA
Gan, Z., Zou, Q., Lin, Y., Xu, Z., Huang, Z., Chen, Z., Lv, Y."Identification of a 13‑gene‑based classifier as a potential biomarker to predict the effects of fluorouracil‑based chemotherapy in colorectal cancer". Oncology Letters 17.6 (2019): 5057-5063.
Chicago
Gan, Z., Zou, Q., Lin, Y., Xu, Z., Huang, Z., Chen, Z., Lv, Y."Identification of a 13‑gene‑based classifier as a potential biomarker to predict the effects of fluorouracil‑based chemotherapy in colorectal cancer". Oncology Letters 17, no. 6 (2019): 5057-5063. https://doi.org/10.3892/ol.2019.10159