Open Access

Effect of gastrointestinal microbiome and its diversity on the expression of tumor‑infiltrating lymphocytes in breast cancer

  • Authors:
    • Jiajie Shi
    • Cuizhi Geng
    • Meixiang Sang
    • Wei Gao
    • Sainan Li
    • Shan Yang
    • Zheng Li
  • View Affiliations

  • Published online on: March 22, 2019     https://doi.org/10.3892/ol.2019.10187
  • Pages: 5050-5056
  • Copyright: © Shi et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The diversity of the gastrointestinal microbiome is closely associated with human health. In the present study, the gastrointestinal microbiome and tumor‑infiltrating lymphocytes (TILs) were compared in patients with breast cancer (BC). A total of 80 patients with BC were divided into three groups based on the expression of TILs, as follows: High expression of TILs (TIL‑H), medium expression of TILs (TIL‑M) and low expression of TILs (TIL‑L). DNA of the gastrointestinal microbiome was determined by Illumina sequencing and taxonomy of 16S ribosomal RNA genes. A χ2 test and UniFrac analysis of β‑diversity were applied to assess the association between clinical characteristics and diversity of the gastrointestinal microbiome. The β‑diversity distribution was statistically significant (weighted UniFrac, P<0.01; unweighted UniFrac, P<0.01) when comparing the TIL‑L and TIL‑H groups and when comparing the three groups (TIL‑H vs. TIL‑M vs. TIL‑L). At the genus level, higher abundances of Mycobacterium, Rhodococcus, Catenibacterium, Bulleidia, Anaerofilum, Sneathia, Devosia and TG5, but lower abundances of Methanosphaera and Anaerobiospirillum (P<0.05) were identified in the TIL‑L group compared with the TIL‑H group. At the species level, the stercoris, barnesiae, coprophilus, flavefaciens and C21_c20 species exhibited a higher abundance in the TIL‑L group, whereas producta and komagatae exhibited a greater abundance in the TIL‑H group (P<0.05). Collectively, the diversity of the gastrointestinal microbiome was associated with the expression of TILs in patients with BC.

References

1 

Akram M, Iqbal M, Daniyal M and Khan AU: Awareness and current knowledge of breast cancer. Biol Res. 50:332017. View Article : Google Scholar : PubMed/NCBI

2 

de la Cruz-Merino L, Chiesa M, Caballero R, Rojo F, Palazón N, Carrasco FH and Sánchez-Margalet V: Breast cancer immunology and immunotherapy: Current status and future perspectives. Int Rev Cell Mol Biol. 331:12017. View Article : Google Scholar : PubMed/NCBI

3 

Gooden MJ, de Bock GH, Leffers N, Daemen T and Nijman HW: The prognostic influence of tumour-infiltrating lymphocytes in cancer: A systematic review with meta-analysis. Br J Cancer. 105:93–103. 2011. View Article : Google Scholar : PubMed/NCBI

4 

Mahmoud SM, Paish EC, Powe DG, Macmillan RD, Grainge MJ, Lee AH, Ellis IO and Green AR: Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol. 29:1949–1955. 2011. View Article : Google Scholar : PubMed/NCBI

5 

Liu S, Foulkes WD, Leung S, Gao D, Lau S, Kos Z and Nielsen TO: Prognostic significance of FOXP3+ tumor infiltrating lymphocytes in breast cancer depends on estrogen receptor and human epidermal growth factor receptor-2 expression status and concurrent cytotoxic T-cell infiltration. Breast Cancer Res. 16:4322014. View Article : Google Scholar : PubMed/NCBI

6 

Seo AN, Lee HJ, Kim EJ, Kim HJ, Jang MH, Lee HE, Kim YJ, Kim JH and Park SY: Tumour-infiltrating CD8+ lymphocytes as an independent predictive factor for pathological complete response to primary systemic therapy in breast cancer. Br J Cancer. 109:2705–2713. 2013. View Article : Google Scholar : PubMed/NCBI

7 

Denkert C, Loibl S, Noske A, Roller M, Muller BM, Komor M, Budczies J, Darb-Esfahani S, Kronenwett R, Hanusch C, et al: Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol. 28:105–113. 2010. View Article : Google Scholar : PubMed/NCBI

8 

Spranger S, Sivan A, Corrales L and Gajewski TF: Tumor and host factors controlling antitumor immunity and efficacy of cancer immunotherapy. Adv Immunol. 130:75–93. 2016. View Article : Google Scholar : PubMed/NCBI

9 

Qin Q, Miao J, Wang S, Yu Q, Li M, He F and Wang G: Association between intestinal flora and immunity in middle-aged and aged people by PCR-DGGE. Wei Sheng Yan Jiu. 46:40–45. 2017.(In Chinese). PubMed/NCBI

10 

Hooper LV, Littman DR and Macpherson AJ: Interactions between the microbiota and the immune system. Science. 336:1268–1273. 2012. View Article : Google Scholar : PubMed/NCBI

11 

Ivanov II and Honda K: Intestinal commensal microbes as immune modulators. Cell Host Microbe. 12:496–508. 2012. View Article : Google Scholar : PubMed/NCBI

12 

Abt MC, Osborne LC, Monticelli LA, Doering TA, Alenghat T, Sonnenberg GF, Paley MA, Antenus M, Williams KL, Erikson J, et al: Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity. 37:158–170. 2012. View Article : Google Scholar : PubMed/NCBI

13 

Ganal SC, Sanos SL, Kallfass C, Oberle K, Johner C, Kirschning C, Lienenklaus S, Weiss S, Staeheli P, Aichele P and Diefenbach A: Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota. Immunity. 37:171–186. 2012. View Article : Google Scholar : PubMed/NCBI

14 

Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA, Molina DA, Salcedo R, Back T, Cramer S, et al: Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science. 342:967–970. 2013. View Article : Google Scholar : PubMed/NCBI

15 

Dingemanse C, Belzer C, van Hijum SA, Günthel M, Salvatori D, den Dunnen JT, Kuijper EJ, Devilee P, de Vos WM, van Ommen GB and Robanus-Maandag EC: Akkermansia muciniphila and Helicobacter typhlonius modulate intestinal tumor development in mice. Carcinogenesis. 36:1388–1396. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Omar Al-Hassi H, Ng O and Brookes M: Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut. 67:3952018. View Article : Google Scholar : PubMed/NCBI

17 

Peled JU, Devlin SM, Staffas A, Lumish M, Khanin R, Littmann ER, Ling L, Kosuri S, Maloy M, Slingerland JB, et al: Intestinal microbiota and relapse after hematopoietic-cell transplantation. J Clin Oncol. 35:1650–1659. 2017. View Article : Google Scholar : PubMed/NCBI

18 

Hammond ME, Hayes DF, Dowsett M, Allred DC, Hagerty KL, Badve S, Fitzgibbons PL, Francis G, Goldstein NS, Hayes M, et al: American society of clinical oncology/college of American pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol. 28:2784–2795. 2010. View Article : Google Scholar : PubMed/NCBI

19 

Wolff AC, Hammond MEH, Allison KH, Harvey BE, Mangu PB, Bartlett JMS, Bilous M, Ellis IO, Fitzgibbons P, Hanna W, et al: Human epidermal growth factor receptor 2 testing in breast cancer: American society of clinical oncology/college of American pathologists clinical practice guideline focused update. J Clin Oncol. 36:2105–2122. 2018. View Article : Google Scholar : PubMed/NCBI

20 

Ogston KN, Miller ID, Payne S, Hutcheon AW, Sarkar TK, Smith I, Schofield A and Heys SD: A new histological grading system to assess response of breast cancers to primary chemotherapy: prognostic significance and survival. Breast. 12:320–327. 2003. View Article : Google Scholar : PubMed/NCBI

21 

Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F, Pruneri G, Wienert S, Van den Eynden G, Baehner FL, Penault-Llorca F, et al: The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol. 26:259–271. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Hida AI and Ohi Y: Evaluation of tumor-infiltrating lymphocytes in breast cancer; proposal of a simpler method. Ann Oncol. 26:23512015. View Article : Google Scholar : PubMed/NCBI

23 

Magoč T and Salzberg SL: FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 27:2957–2963. 2011. View Article : Google Scholar : PubMed/NCBI

24 

Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, et al: QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 7:335–336. 2010. View Article : Google Scholar : PubMed/NCBI

25 

Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, Mills DA and Caporaso JG: Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods. 10:57–59. 2013. View Article : Google Scholar : PubMed/NCBI

26 

Edgar and Robert C: UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 10:996–998. 2013. View Article : Google Scholar : PubMed/NCBI

27 

Wang Q, Garrity GM, Tiedje JM and Cole JR: Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 73:5261–5267. 2007. View Article : Google Scholar : PubMed/NCBI

28 

DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P and Andersen GL: Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 72:5069–5072. 2006. View Article : Google Scholar : PubMed/NCBI

29 

White JR, Nagarajan N and Pop M: Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput Biol. 5:e10003522009. View Article : Google Scholar : PubMed/NCBI

30 

Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, Almeida M, Quinquis B, Levenez F, Galleron N, et al: Dietary intervention impact on gut microbial gene richness. Nature. 500:585–588. 2013. View Article : Google Scholar : PubMed/NCBI

31 

Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK, Al-Soud WA, Sørensen SJ, Hansen LH and Jakobsen M: Gut microbiota in human adults with type 2 differs from non-diabetic adults. PLoS One. 5:e908552000.

32 

Markle JG, Frank DN, Mortin-Toth S, Robertson CE, Feazel LM, Rolle-Kampczyk U, von Bergen M, McCoy KD, Macpherson AJ and Danska JS: Sex differences in the gut microbiome drive hormone-dependent regulation of autoim munity. Science. 339:1084–1088. 2013. View Article : Google Scholar : PubMed/NCBI

33 

Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, Britt EB, Fu X, Wu Y, Li L, et al: Intestinal microbiota metabolism of L carnitine, a nutrient in red meat promotes atherosclerosis. Nat Med. 19:576–585. 2013. View Article : Google Scholar : PubMed/NCBI

34 

Wang T, Cai G, Qiu Y, Fei N, Zhang M, Pang X, Jia W, Cai S and Zhao L: Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J. 6:320–329. 2011. View Article : Google Scholar : PubMed/NCBI

35 

Vujkovic-Cvijin I, Dunham RM, Iwai S, Maher MC, Albright RG, Broadhurst MJ, Hernandez RD, Lederman MM, Huang Y, Somsouk M, et al: Dysbiosis of the gut microbiota is associated with HIV disease progression and tryptophan catabolism. Sci Transl Med. 5:193ra912013. View Article : Google Scholar : PubMed/NCBI

36 

Fox JG, Feng Y, Theve EJ, Raczynski AR, Fiala JLA, Doernte AL, Williams M, McFaline JL, Essigmann JM, Schauer DB, et al: Gut microbes define liver cancer risk in mice exposed to chemical and viral trans genic hepatocarcinogens. Gut. 59:88–97. 2009. View Article : Google Scholar

37 

Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung YM, et al: Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 472:57–63. 2011. View Article : Google Scholar : PubMed/NCBI

38 

Goedert JJ, Jones G, Hua X, Xu X, Yu G, Flores R, Falk RT, Gail MH, Shi J, Ravel J and Feigelson HS: Investigation of the association between the fecal microbiota and breast cancer in postmenopausal women: a population-based case-control pilot study. J Natl Cancer Inst. 107:djv1472015. View Article : Google Scholar : PubMed/NCBI

39 

Luu TH, Michel C, Bard JM, Dravet F, Nazih H and Bobin-Dubigeon C: Intestinal proportion of Blautia sp. is associated with clinical stage and histoprognostic grade in patients with early-stage breast cancer. Nutr Cancer. 69:267–275. 2017. View Article : Google Scholar : PubMed/NCBI

40 

Fuhrman BJ, Feigelson HS, Flores R, Gail MH, Xu X, Ravel J and Goedert JJ: Associations of the fecal microbiome with urinary estrogens and estrogen metabolites in postmenopausal women. J Clin Endocrinol Metab. 99:4632–4640. 2014. View Article : Google Scholar : PubMed/NCBI

41 

Flores R, Shi J, Fuhrman B, Xu X, Veenstra TD, Gail MH, Gajer P, Ravel J and Goedert JJ: Fecal microbial determinants of fecal and systemic estrogens and estrogen metabolites: A cross-sectional study. J Transl Med. 10:2532012. View Article : Google Scholar : PubMed/NCBI

42 

Estrogen excretion patterns and plasma levels in vegetarian and omnivorous women. Nutr Rev. 41:180–183. 1983.PubMed/NCBI

43 

Goldin BR, Adlercreutz H, Gorbach SL, Warram JH, Dwyer JT, Swenson L and Woods MN: Estrogen excretion patterns and plasma levels in vegetarian and omnivorous women. N Engl J Med. 307:1542–1547. 1982. View Article : Google Scholar : PubMed/NCBI

44 

Savas P, Salgado R, Denkert C, Sotiriou C, Darcy PK, Smyth MJ and Loi S: Clinical relevance of host immunity in breast cancer: from TILs to the clinic. Nat Rev Clin Oncol. 13:228–241. 2016. View Article : Google Scholar : PubMed/NCBI

45 

Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillère R, Hannani D, Enot DP, Pfirschke C, Engblom C, Pittet MJ, et al: The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science. 342:971–976. 2013. View Article : Google Scholar : PubMed/NCBI

46 

Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C, Tosolini M, Camus M, Berger A, Wind P, et al: Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 313:1960–1964. 2006. View Article : Google Scholar : PubMed/NCBI

47 

Rastogi P, Anderson SJ, Bear HD, Geyer CE, Kahlenberg MS, Robidoux A, Margolese RG, Hoehn JL, Vogel VG, Dakhil SR, et al: Preoperative chemotherapy: Updates of national surgical adjuvant breast and bowel project protocols B-18 and B-27. J Clin Oncol. 26:778–785. 2008. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 17 Issue 6

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Shi, J., Geng, C., Sang, M., Gao, W., Li, S., Yang, S., & Li, Z. (2019). Effect of gastrointestinal microbiome and its diversity on the expression of tumor‑infiltrating lymphocytes in breast cancer. Oncology Letters, 17, 5050-5056. https://doi.org/10.3892/ol.2019.10187
MLA
Shi, J., Geng, C., Sang, M., Gao, W., Li, S., Yang, S., Li, Z."Effect of gastrointestinal microbiome and its diversity on the expression of tumor‑infiltrating lymphocytes in breast cancer". Oncology Letters 17.6 (2019): 5050-5056.
Chicago
Shi, J., Geng, C., Sang, M., Gao, W., Li, S., Yang, S., Li, Z."Effect of gastrointestinal microbiome and its diversity on the expression of tumor‑infiltrating lymphocytes in breast cancer". Oncology Letters 17, no. 6 (2019): 5050-5056. https://doi.org/10.3892/ol.2019.10187