Open Access

Co‑inhibition of BMI1 and Mel18 enhances chemosensitivity of esophageal squamous cell carcinoma in vitro and in vivo

  • Authors:
    • Jiansong Wang
    • Huaijun Ji
    • Qiang Zhu
    • Xinshuang Yu
    • Juan Du
    • Zhongmin Jiang
  • View Affiliations

  • Published online on: March 19, 2019     https://doi.org/10.3892/ol.2019.10160
  • Pages: 5012-5022
  • Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Esophageal squamous cell carcinoma (ESCC) accounts for almost 90% of esophageal cancer cases and is the sixth most common cause of cancer‑associated mortality worldwide. Cisplatin is the standard therapeutic reagent for ESCC; however, chemoresistance frequently occurs after a few weeks, which leads to ESCC recurrence. Aberrant expression of B lymphoma Mo‑MLV insertion region 1 homolog (BMI1) has been reported to activate multiple growth‑regulatory pathways, induce antiapoptotic abilities in numerous types of cancer cells and promote chemoresistance. However, to the best of our knowledge, the role of BMI1 in cisplatin‑resistant ESCC, and the interaction between BMI1 and its homologue melanoma nuclear protein 18 (Mel18) remain unknown. The present study identified that knockdown of BMI1 promoted cytotoxic effects of cisplatin, and co‑inhibition of Mel18 and BMI1 enhanced cisplatin‑induced apoptosis and cytotoxicity. Inhibition of BMI1 and Mel18 also suppressed the expression of c‑Myc. Furthermore, this combined inhibition sensitized esophageal xenograft tumors to cisplatin to a greater extent compared with BMI1 inhibition alone. In summary, the current study demonstrated that inhibition of BMI1 and Mel18 could increase the sensitivity of esophageal cancer cells to cisplatin via inhibition of c‑Myc. Therefore, combined targeting of BMI1 and Mel18 may serve as a promising therapeutic strategy for sensitizing ESCC to chemotherapy.

References

1 

Global Burden of Disease Cancer Collaboration, ; Fitzmaurice C, Dicker D, Pain A, Hamavid H, Moradi-Lakeh M, MacIntyre MF, Allen C, Hansen G, Woodbrook R, et al: The global burden of cancer 2013. JAMA Oncol. 1:505–527. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Waddell T, Chau I, Cunningham D, Gonzalez D, Okines AF, Okines C, Wotherspoon A, Saffery C, Middleton G, Wadsley J, et al: Epirubicin, oxaliplatin, and capecitabine with or without panitumumab for patients with previously untreated advanced oesophagogastric cancer (REAL3): A randomised, open-label phase 3 trial. Lancet Oncol. 14:481–489. 2013. View Article : Google Scholar : PubMed/NCBI

4 

Hingorani M, Crosby T, Maraveyas A, Dixit S, Bateman A and Roy R: Neoadjuvant chemoradiotherapy for resectable oesophageal and gastro-oesophageal junction cancer-do we need another randomised trial. Clin Oncol (R Coll Radiol). 23:696–705. 2011. View Article : Google Scholar : PubMed/NCBI

5 

Benetatos L, Vartholomatos G and Hatzimichael E: Polycomb group proteins and MYC: The cancer connection. Cell Mol Life Sci. 71:257–269. 2014. View Article : Google Scholar : PubMed/NCBI

6 

Ferretti R, Bhutkar A, McNamara MC and Lees JA: BMI1 induces an invasive signature in melanoma that promotes metastasis and chemoresistance. Genes Dev. 30:18–33. 2016. View Article : Google Scholar : PubMed/NCBI

7 

Jin X, Kim LJY, Wu Q, Wallace LC, Prager BC, Sanvoranart T, Gimple RC, Wang X, Mack SC, Miller TE, et al: Targeting glioma stem cells through combined BMI1 and EZH2 inhibition. Nat Med. 23:1352–1361. 2017. View Article : Google Scholar : PubMed/NCBI

8 

Ren H, Du P, Ge Z, Jin Y, Ding D, Liu X and Zou Q: TWIST1 and BMI1 in cancer metastasis and chemoresistance. J Cancer. 7:1074–1080. 2016. View Article : Google Scholar : PubMed/NCBI

9 

Chen D, Wu M, Li Y, Chang I, Yuan Q, Ekimyan-Salvo M, Deng P, Yu B, Yu Y, Dong J, et al: Targeting BMI1(+) cancer stem cells overcomes chemoresistance and inhibits metastases in squamous cell carcinoma. Cell Stem Cell. 20:621–634. 2017. View Article : Google Scholar : PubMed/NCBI

10 

Kreso A, van Galen P, Pedley NM, Lima-Fernandes E, Frelin C, Davis T, Cao L, Baiazitov R, Du W, Sydorenko N, et al: Self-renewal as a therapeutic target in human colorectal cancer. Nat Med. 20:29–36. 2014. View Article : Google Scholar : PubMed/NCBI

11 

Wang Q, Li Z, Wu Y, Huang R, Zhu Y, Zhang W, Wang Y and Cheng J: Pharmacological inhibition of Bmi1 by PTC-209 impaired tumor growth in head neck squamous cell carcinoma. Cancer Cell Int. 17:1072017. View Article : Google Scholar : PubMed/NCBI

12 

Cancer Genome Atlas Research N, Analysis Working Group, ; Asan U, Agency BCC, et al: Integrated genomic characterization of oesophageal carcinoma. Nature. 541:169–175. 2017. View Article : Google Scholar : PubMed/NCBI

13 

Jo S, Lee YL, Kim S, Lee H and Chung H: PCGF2 negatively regulates arsenic trioxide-induced PML-RARA protein degradation via UBE2I inhibition in NB4 cells. Biochim Biophys Acta. 1863:1499–1509. 2016. View Article : Google Scholar : PubMed/NCBI

14 

Huang CY, Kuo CH, Pai PY, Ho TJ, Lin YM, Chen RJ, Tsai FJ, Vijaya Padma V, Kuo WW and Huang CY: Inhibition of HSF2 SUMOylation via MEL18 upregulates IGF-IIR and leads to hypertension-induced cardiac hypertrophy. Int J Cardiol. 257:283–290. 2018. View Article : Google Scholar : PubMed/NCBI

15 

Liu X, Wei W, Li X, Shen P, Ju D, Wang Z, Zhang R, Yang F, Chen C, Cao K, et al: BMI1 and MEL18 promote colitis-associated cancer in Mice via REG3B and STAT3. Gastroenterology. 153:1607–1620. 2017. View Article : Google Scholar : PubMed/NCBI

16 

Won HY, Lee JY, Shin DH, Park JH, Nam JS, Kim HC and Kong G: Loss of Mel-18 enhances breast cancer stem cell activity and tumorigenicity through activating notch signaling mediated by the Wnt/TCF pathway. FASEB J. 26:5002–5013. 2012. View Article : Google Scholar : PubMed/NCBI

17 

Jo S, Lee H, Kim S, Hwang EM, Park JY, Kang SS and Chung H: Inhibition of PCGF2 enhances granulocytic differentiation of acute promyelocytic leukemia cell line HL-60 via induction of HOXA7. Biochem Biophys Res Commun. 416:86–91. 2011. View Article : Google Scholar : PubMed/NCBI

18 

Ji H, Cao M, Ren K, Sun N, Wang W, Zhu Q, Zang Q and Jiang Z: Expression and clinicopathological significance of Mel-18 and Bmi-1 in esophageal squamous cell carcinoma. Technol Cancer Res Treat. 1533034617705055. 2017. View Article : Google Scholar

19 

Guo BH, Zhang X, Zhang HZ, Lin HL, Feng Y, Shao JY, Huang WL, Kung HF and Zeng MS: Low expression of Mel-18 predicts poor prognosis in patients with breast cancer. Ann Oncol. 21:2361–2369. 2010. View Article : Google Scholar : PubMed/NCBI

20 

Lu YW, Li J and Guo WJ: Expression and clinicopathological significance of Mel-18 and Bmi-1 mRNA in gastric carcinoma. J Exp Clin Cancer Res. 29:1432010. View Article : Google Scholar : PubMed/NCBI

21 

Wang W, Lin T, Huang J, Hu W, Xu K and Liu J: Analysis of Mel-18 expression in prostate cancer tissues and correlation with clinicopathologic features. Urol Oncol. 29:244–251. 2011. View Article : Google Scholar : PubMed/NCBI

22 

Tao J, Liu YL, Zhang G, Ma YY, Cui BB and Yang YM: Expression and clinicopathological significance of Mel-18 mRNA in colorectal cancer. Tumour Biol. 35:9619–9625. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Dukers DF, van Galen JC, Giroth C, Jansen P, Sewalt RG, Otte AP, Kluin-Nelemans HC, Meijer CJ and Raaphorst FM: Unique polycomb gene expression pattern in Hodgkin's lymphoma and Hodgkin's lymphoma-derived cell lines. Am J Pathol. 164:873–881. 2004. View Article : Google Scholar : PubMed/NCBI

24 

Zakrzewska M, Zakrzewski K, Gresner SM, Piaskowski S, Zalewska-Szewczyk B and Liberski PP: Polycomb genes expression as a predictor of poor clinical outcome in children with medulloblastoma. Child's Nerv Syst. 27:79–86. 2011. View Article : Google Scholar

25 

Vekony H, Raaphorst FM, Otte AP, van Lohuizen M, Leemans CR, van der Waal I and Bloemena E: High expression of Polycomb group protein EZH2 predicts poor survival in salivary gland adenoid cystic carcinoma. J Clin Pathol. 61:744–749. 2008. View Article : Google Scholar : PubMed/NCBI

26 

Vekony H, Roser K, Loning T, Raaphorst FM, Leemans CR, Van der Waal I and Bloemena E: Deregulated expression of p16INK4a and p53 pathway members in benign and malignant myoepithelial tumours of the salivary glands. Histopathology. 53:658–666. 2008. View Article : Google Scholar : PubMed/NCBI

27 

Jung JH, Choi HJ, Maeng YS, Choi JY, Kim M, Kwon JY, Park YW, Kim YM, Hwang D and Kwon YG: Mel-18, a mammalian polycomb gene, regulates angiogenic gene expression of endothelial cells. Biochem Biophys Res Commun. 400:523–530. 2010. View Article : Google Scholar : PubMed/NCBI

28 

Park JH, Lee JY, Shin DH, Jang KS, Kim HJ and Kong G: Loss of Mel-18 induces tumor angiogenesis through enhancing the activity and expression of HIF-1alpha mediated by the PTEN/PI3K/Akt pathway. Oncogene. 30:4578–4589. 2011. View Article : Google Scholar : PubMed/NCBI

29 

Guo WJ, Datta S, Band V and Dimri GP: Mel-18, a polycomb group protein, regulates cell proliferation and senescence via transcriptional repression of Bmi-1 and c-Myc oncoproteins. Mol Biol Cell. 18:536–546. 2007. View Article : Google Scholar : PubMed/NCBI

30 

Guo WJ, Zeng MS, Yadav A, Song LB, Guo BH, Band V and Dimri GP: Mel-18 acts as a tumor suppressor by repressing Bmi-1 expression and down-regulating Akt activity in breast cancer cells. Cancer Res. 67:5083–5089. 2007. View Article : Google Scholar : PubMed/NCBI

31 

Zhang XW, Sheng YP, Li Q, Qin W, Lu YW, Cheng YF, Liu BY, Zhang FC, Li J, Dimri GP and Guo WJ: BMI1 and Mel-18 oppositely regulate carcinogenesis and progression of gastric cancer. Mol Cancer. 9:402010. View Article : Google Scholar : PubMed/NCBI

32 

Akasaka T, van Lohuizen M, van der Lugt N, Mizutani-Koseki Y, Kanno M, Taniguchi M, Vidal M, Alkema M, Berns A and Koseki H: Mice doubly deficient for the polycomb group genes Mel18 and Bmi1 reveal synergy and requirement for maintenance but not initiation of Hox gene expression. Development. 128:1587–1597. 2001.PubMed/NCBI

33 

Gao Z, Zhang J, Bonasio R, Strino F, Sawai A, Parisi F, Kluger Y and Reinberg D: PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. Mol Cell. 45:344–356. 2012. View Article : Google Scholar : PubMed/NCBI

34 

Liu WL, Guo XZ, Zhang LJ, Wang JY, Zhang G, Guan S, Chen YM, Kong QL, Xu LH, Li MZ, et al: Prognostic relevance of Bmi-1 expression and autoantibodies in esophageal squamous cell carcinoma. BMC Cancer. 10:4672010. View Article : Google Scholar : PubMed/NCBI

35 

Shi Q, Shen LY, Dong B, Fu H, Kang XZ, Yang YB, Dai L, Yan WP, Xiong HC, Liang Z and Chen KN: The identification of the ATR inhibitor VE-822 as a therapeutic strategy for enhancing cisplatin chemosensitivity in esophageal squamous cell carcinoma. Cancer Lett. 432:56–68. 2018. View Article : Google Scholar : PubMed/NCBI

36 

Galluzzi L, Vitale I, Michels J, Brenner C, Szabadkai G, Harel-Bellan A, Castedo M and Kroemer G: Systems biology of cisplatin resistance: Past, present and future. Cell Death Dis. 5:e12572014. View Article : Google Scholar : PubMed/NCBI

37 

Sanchez-Beato M, Sanchez E, Garcia JF, Pérez-Rosado A, Montoya MC, Fraga M, Artiga MJ, Navarrete M, Abraira V, Morente M, et al: Abnormal PcG protein expression in Hodgkin's lymphoma. Relation with E2F6 and NFkappaB transcription factors. J Pathol. 204:528–537. 2004. View Article : Google Scholar : PubMed/NCBI

38 

Silva J, Garcia JM, Peña C, García V, Domínguez G, Suárez D, Camacho FI, Espinosa R, Provencio M, España P and Bonilla F: Implication of polycomb members Bmi-1, Mel-18, and Hpc-2 in the regulation of p16INK4a, p14ARF, h-TERT, and c-Myc expression in primary breast carcinomas. Clin Cancer Res. 12:6929–6936. 2006. View Article : Google Scholar : PubMed/NCBI

39 

Merkow RP, Bilimoria KY, McCarter MD, Chow WB, Ko CY and Bentrem DJ: Use of multimodality neoadjuvant therapy for esophageal cancer in the United States: Assessment of 987 hospitals. Ann Surg Oncol. 19:357–364. 2012. View Article : Google Scholar : PubMed/NCBI

40 

Banerjee Mustafi S, Chakraborty PK, Naz S, Dwivedi SK, Street M, Basak R, Yang D, Ding K, Mukherjee P and Bhattacharya R: MDR1 mediated chemoresistance: BMI1 and TIP60 in action. Biochim Biophys Acta. 1859:983–993. 2016. View Article : Google Scholar : PubMed/NCBI

41 

Zhao Q, Qian Q, Cao D, Yang J, Gui T and Shen K: Role of BMI1 in epithelial ovarian cancer: Investigated via the CRISPR/Cas9 system and RNA sequencing. J Ovarian Res. 11:312018. View Article : Google Scholar : PubMed/NCBI

42 

M JR and S V: BMI1 and PTEN are key determinants of breast cancer therapy: A plausible therapeutic target in breast cancer. Gene. 678:302–311. 2018. View Article : Google Scholar : PubMed/NCBI

43 

Riis ML, Luders T, Nesbakken AJ, Vollan HS, Kristensen V and Bukholm IR: Expression of BMI-1 and Mel-18 in breast tissue-a diagnostic marker in patients with breast cancer. BMC Cancer. 10:6862010. View Article : Google Scholar : PubMed/NCBI

44 

Tetsu O, Ishihara H, Kanno R, Kamiyasu M, Inoue H, Tokuhisa T, Taniguchi M and Kanno M: mel-18 negatively regulates cell cycle progression upon B cell antigen receptor stimulation through a cascade leading to c-myc/cdc25. Immunity. 9:439–448. 1998. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 17 Issue 6

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Wang, J., Ji, H., Zhu, Q., Yu, X., Du, J., & Jiang, Z. (2019). Co‑inhibition of BMI1 and Mel18 enhances chemosensitivity of esophageal squamous cell carcinoma in vitro and in vivo. Oncology Letters, 17, 5012-5022. https://doi.org/10.3892/ol.2019.10160
MLA
Wang, J., Ji, H., Zhu, Q., Yu, X., Du, J., Jiang, Z."Co‑inhibition of BMI1 and Mel18 enhances chemosensitivity of esophageal squamous cell carcinoma in vitro and in vivo". Oncology Letters 17.6 (2019): 5012-5022.
Chicago
Wang, J., Ji, H., Zhu, Q., Yu, X., Du, J., Jiang, Z."Co‑inhibition of BMI1 and Mel18 enhances chemosensitivity of esophageal squamous cell carcinoma in vitro and in vivo". Oncology Letters 17, no. 6 (2019): 5012-5022. https://doi.org/10.3892/ol.2019.10160