Open Access

RNA sequencing uncovers the key long non‑coding RNAs and potential molecular mechanism contributing to XAV939‑mediated inhibition of non‑small cell lung cancer

  • Authors:
    • Haixiang Yu
    • Zhifeng Han
    • Zhenan Xu
    • Chong An
    • Lei Xu
    • Hua Xin
  • View Affiliations

  • Published online on: March 27, 2019     https://doi.org/10.3892/ol.2019.10191
  • Pages: 4994-5004
  • Copyright: © Yu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The present study aimed to reveal the key long non‑coding RNAs (lncRNAs) and the potential molecular mechanisms of XAV939 treatment in non‑small cell lung cancer (NSCLC). The NSCLC cell line, NCI‑H1299, was cultured with 10 µM XAV939 for 12 h, and NCI‑H1299 cells without XAV939 treatment were used as controls. Following RNA isolation from the two groups, RNA‑sequencing was performed to detect transcript expression levels, and differentially‑expressed lncRNAs (DE‑lncRNAs) and DE‑genes (DEGs) were identified between groups and analyzed for their functions and associated pathways. The potential associations between proteins encoded by DEGs were revealed via a protein‑protein interaction (PPI) network. Subsequently, the microRNA (miRNA/miR)‑mRNA, lncRNA‑miRNA and lncRNA‑mRNA interactions were explored, followed by competing endogenous RNA (ceRNA) network construction. A total of 396 DEGs and 224 DE‑lncRNAs were identified between the XAV939 and control groups. These lncRNAs were mainly enriched in pathways such as ‘ferroptosis’ [DEG, solute carrier family 7 member 11 (SLC7A11)]. The PPI network consisted of 97 nodes and 112 interactions. Furthermore, a total of 10 noteworthy lncRNAs were revealed in the DE‑lncRNA‑DEG interaction. Finally, the lncRNA‑miRNA‑mRNA regulatory association, including MIR503 host gene (MIR503HG)‑miR1273c‑SRY‑box 4 (SOX4), was explored in the current ceRNA network. The downregulation of lncRNA MIR503HG induced by XAV939 may serve an important role in NSCLC suppression via sponging miR‑1273c and regulating SOX4 expression. Furthermore, the downregulation of SLC7A11 induced by XAV939 may also inhibit the development of NSCLC via the ferroptosis pathway.

References

1 

Johnson BE: Divide and conquer to treat lung cancer. N Engl J Med. 375:1892–1893. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Chen Z, Fillmore CM, Hammerman PS, Kim CF and Wong KK: Non-small-cell lung cancers: A heterogeneous set of diseases. Nat Rev Cancer. 14:535–546. 2014. View Article : Google Scholar : PubMed/NCBI

3 

Siegel R, Naishadham D and Jemal A: Cancer statistics, 2013. CA Cancer J Clin. 63:11–30. 2013. View Article : Google Scholar : PubMed/NCBI

4 

Schiller JH, Harrington D, Belani CP, Langer C, Sandler A, Krook J, Zhu J and Johnson DH; Eastern Cooperative Oncology Group, : Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med. 346:92–98. 2002. View Article : Google Scholar : PubMed/NCBI

5 

Petty RD, Nicolson MC, Kerr KM, Collie-Duguid E and Murray GI: Gene expression profiling in non-small cell lung cancer: From molecular mechanisms to clinical application. Clin Cancer Res. 10:3237–3248. 2004. View Article : Google Scholar : PubMed/NCBI

6 

Cheng N, Li X, Zhao C, Ren S, Chen X, Cai W, Zhao M, Zhang Y, Li J, Wang Q and Zhou C: Microarray expression profile of long non-coding RNAs in EGFR-TKIs resistance of human non-small cell lung cancer. Oncol Rep. 33:833–839. 2015. View Article : Google Scholar : PubMed/NCBI

7 

Wilusz JE, Sunwoo H and Spector DL: Long noncoding RNAs: Functional surprises from the RNA world. Genes Dev. 23:1494–1504. 2009. View Article : Google Scholar : PubMed/NCBI

8 

Zhou M, Guo M, He D, Wang X, Cui Y, Yang H, Hao D and Sun J: A potential signature of eight long non-coding RNAs predicts survival in patients with non-small cell lung cancer. J Transl Med. 13:2312015. View Article : Google Scholar : PubMed/NCBI

9 

Ghadimi K, Bahrami N, Fathi M, Farzanegan B, Naji T, Emami M and Mohamadnia A: Diagnostic value of LunX mRNA and CEA mRNA expression in pleural fluid of patients with non-small cell lung cancer. Minerva Pneumol. 56:90–95. 2017.

10 

Zhou HX, Yang MX, Wang Y, Cao WM, Lu KF, Zong LY, Wu RQ and Zhang P: Plasma LUNX mRNA, a non-invasive specific biomarker for diagnosis and prognostic prediction of non-small cell lung cancer. Am J Cancer Res. 6:452–458. 2016.PubMed/NCBI

11 

Xu C, Xu Y, Liao X, Liao R, Zhang L, Niu K, Li T, Li D, Chen Z, Duan Y and Sun J: Plasma miRNAs in predicting radiosensitivity in non-small cell lung cancer. Tumour Biol. 37:11927–11936. 2016. View Article : Google Scholar : PubMed/NCBI

12 

Wu C and Arora P: Long noncoding RNA-microRNA-mRNA: A novel tripartite axis in the regulation of cardiac hypertrophy. Circ Cardiovasc Genet. 7:729–731. 2014. View Article : Google Scholar : PubMed/NCBI

13 

Ye S, Yang L, Zhao X, Song W, Wang W and Zheng S: Bioinformatics method to predict two regulation mechanism: TF-miRNA-mRNA and lncRNA-miRNA-mRNA in pancreatic cancer. Cell Biochem Biophys. 70:1849–1858. 2014. View Article : Google Scholar : PubMed/NCBI

14 

Yang ZH, Zheng R, Gao Y, Zhang Q and Zhang H: Abnormal gene expression and gene fusion in lung adenocarcinoma with high-throughput RNA sequencing. Cancer Gene Ther. 21:74–82. 2014. View Article : Google Scholar : PubMed/NCBI

15 

Leidinger P, Brefort T, Backes C, Krapp M, Galata V, Beier M, Kohlhaas J, Huwer H, Meese E and Keller A: High-throughput qRT-PCR validation of blood microRNAs in non-small cell lung cancer. Oncotarget. 7:4611–4623. 2016. View Article : Google Scholar : PubMed/NCBI

16 

Tian X, Hou W, Bai S, Fan J, Tong H and Bai Y: XAV939 promotes apoptosis in a neuroblastoma cell line via telomere shortening. Oncol Rep. 32:1999–2006. 2014. View Article : Google Scholar : PubMed/NCBI

17 

Guo W, Shen F, Xiao W, Chen J and Pan F: Wnt inhibitor XAV939 suppresses the viability of small cell lung cancer NCI-H446 cells and induces apoptosis. Oncol Lett. 14:6585–6591. 2017.PubMed/NCBI

18 

Lin HH, Feng WC, Lu LC, Shao YY, Cheng AL and Hsu CH: Abstract 2052: WNT/beta-catenin signaling inhibitors improve the anti-proliferative effect of sorafenib against hepatocellular carcinoma (HCC) cells. Cancer Res. 73:20522013. View Article : Google Scholar : PubMed/NCBI

19 

Liu Y, Su D and Song T: Programmed cell death 4 inhibits proliferation and differentiation and induces apoptosis of human mesenchymal stem cells through suppressing the Wnt/β-catenin pathway. RSC Adv. 7:26566–26573. 2017. View Article : Google Scholar

20 

Ran M, Chen B and Li Z, Wu M, Liu X, He C, Zhang S and Li Z: Systematic identification of long non-coding RNAs in immature and mature porcine testes. Biol Reprod. 94:772016. View Article : Google Scholar : PubMed/NCBI

21 

Bolger AM, Lohse M and Usadel B: Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 30:2114–2120. 2014. View Article : Google Scholar : PubMed/NCBI

22 

Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, Aken BL, Barrell D, Zadissa A, Searle S, et al: GENCODE: The reference human genome annotation for The ENCODE Project. Genome Res. 22:1760–1774. 2012. View Article : Google Scholar : PubMed/NCBI

23 

Trapnell C, Pachter L and Salzberg SL: TopHat: Discovering splice junctions with RNA-Seq. Bioinformatics. 25:1105–1111. 2009. View Article : Google Scholar : PubMed/NCBI

24 

Lun AT, Chen Y and Smyth GK: It's DE-licious: A recipe for differential expression analyses of RNA-seq experiments using quasi-likelihood methods in edgeR. Methods Mol Biol. 1418:391–416. 2016. View Article : Google Scholar : PubMed/NCBI

25 

Gene Ontology Consortium, . The gene ontology in 2010: Extensions and refinements. Nucleic Acids Res. 38((Database Issue)): D331–D335. 2010.PubMed/NCBI

26 

Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, Guo Y, Stephens R, Baseler MW, Lane HC and Lempicki RA: DAVID bioinformatics resources: Expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 35((Web Server Issue)): W169–W175. 2007. View Article : Google Scholar : PubMed/NCBI

27 

Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, et al: STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43((Database Issue)): D447–D452. 2015. View Article : Google Scholar : PubMed/NCBI

28 

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13:2498–2504. 2003. View Article : Google Scholar : PubMed/NCBI

29 

Opsahl T, Agneessens F and Skvoretz J: Node centrality in weighted networks: Generalizing degree and shortest paths. Social Networks. 32:245–251. 2010. View Article : Google Scholar

30 

Pearson K: Note on regression and inheritance in the case of two parents. Proc R Soc Lond. 58:240–242. 1895. View Article : Google Scholar

31 

Benjamini Y and Hochberg Y: Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Statist Soc. 57:289–300. 1995.

32 

Yu G, Wang LG, Han Y and He QY: clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS. 16:284–287. 2012. View Article : Google Scholar : PubMed/NCBI

33 

Resnik P: Semantic similarity in a taxonomy: An information-based measure and its application to problems of ambiguity in natural language. J Artif Intell Res. 11:95–130. 1999. View Article : Google Scholar

34 

Wang JZ, Du Z, Payattakool R, Yu PS and Chen CF: A new method to measure the semantic similarity of GO terms. Bioinformatics. 23:1274–1281. 2007. View Article : Google Scholar : PubMed/NCBI

35 

Yu G, Li F, Qin Y, Bo X, Wu Y and Wang S: GOSemSim: An R package for measuring semantic similarity among GO terms and gene products. Bioinformatics. 26:976–978. 2010. View Article : Google Scholar : PubMed/NCBI

36 

Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, Koplev S, Jenkins SL, Jagodnik KM, Lachmann A, et al: Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44((W1)): W90–W97. 2016. View Article : Google Scholar : PubMed/NCBI

37 

Zhan Y, Zang H, Feng J, Lu J, Chen L and Fan S: Long non-coding RNAs associated with non-small cell lung cancer. Oncotarget. 8:69174–69184. 2017. View Article : Google Scholar : PubMed/NCBI

38 

Zheng K, Wu G, Qin X, Wang Y, Xia S and Meng X: Effects of XAV939 on proliferation and glycolysis of hepatocellular carcinoma cells. J Mod Oncol. 13:2023–2026. 2016.

39 

Teng H, Wang P, Xue Y, Liu X, Ma J, Cai H, Xi Z, Li Z and Liu Y: Role of HCP5-miR-139-RUNX1 feedback loop in regulating malignant behavior of glioma cells. Mol Ther. 24:1806–1822. 2016. View Article : Google Scholar : PubMed/NCBI

40 

Muys BR, Lorenzi JC, Zanette DL, Lima e Bueno Rde B, de Araújo LF, Dinarte-Santos AR, Alves CP, Ramão A, de Molfetta GA, Vidal DO and Silva WA Jr: Placenta-Enriched LincRNAs MIR503HG and linc00629 decrease migration and invasion potential of JEG-3 cell line. PLoS One. 11:e01515602016. View Article : Google Scholar : PubMed/NCBI

41 

Pachera E, Assassi S, Cintora GS, Frank-Bertoncelj M, Haunerdinger V, Dobrota R, Brock M, Vettori S, Hellerbrand C, Feghali-Bostwick CA, et al: OP0284 long noncoding RNA MIR503HG is a novel factor in the pathogenesis of systemic sclerosis. Ann Rheum Dis. 74 (Suppl 2):S180.1–180. 2015. View Article : Google Scholar

42 

Grimminger PP, Maus MK, Schneider PM, Metzger R, Hölscher AH, Sugita H, Danenberg PV, Alakus H and Brabender J: Glutathione S-transferase PI (GST-PI) mRNA expression and DNA methylation is involved in the pathogenesis and prognosis of NSCLC. Lung Cancer. 78:87–91. 2012. View Article : Google Scholar : PubMed/NCBI

43 

Scharer CD, Mccabe CD, Aliseyed M, Berger MF, Bulyk ML and Moreno CS: Genome-wide promoter analysis of the SOX4 transcriptional network in prostate cancer cells. Cancer Res. 69:709–717. 2009. View Article : Google Scholar : PubMed/NCBI

44 

Chen QL, Zheng WL, Yao WJ, Nie LW, Cheng SH and Ma WL: Analysis of SOX4 gene mutation in non-small cell lung cancer tissues. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 24:505–509. 2007.PubMed/NCBI

45 

Tang T, Huan L, Zhang S, Zhou H, Gu L, Chen X and Zhang L: MicroRNA-212 functions as a tumor-suppressor in human non-small cell lung cancer by targeting SOX4. Oncol Rep. 38:2243–2250. 2017. View Article : Google Scholar : PubMed/NCBI

46 

Li Y, Chen P, Zu L, Liu B, Wang M and Zhou Q: MicroRNA-338-3p suppresses metastasis of lung cancer cells by targeting the EMT regulator Sox4. Am J Cancer Res. 6:127–140. 2016.PubMed/NCBI

47 

Foss KM, Sima C, Ugolini D, Neri M, Allen KE and Weiss GJ: miR-1254 and miR-574-5p: Serum-based microRNA biomarkers for early-stage non-small cell lung cancer. J Thorac Oncol. 6:482–488. 2011. View Article : Google Scholar : PubMed/NCBI

48 

Lee CW, Kang MR, Yun J, Oh SJ and Kang JS: Abstract 4387: Up-regulation of VHL by miR-1273C inhibits renal cell carcinoma. Cancer Res. 74:43872014. View Article : Google Scholar

49 

Li C, Zheng X, Han Y, Lv Y, Lan F and Zhao J: XAV939 inhibits the proliferation and migration of lung adenocarcinoma A549 cells through the WNT pathway. Oncol Lett. 15:8973–8982. 2018.PubMed/NCBI

50 

Lachaier E, Louandre C, Ezzoukhry Z, Godin C, Mazière JC, Chauffert B and Galmiche A: Ferroptosis, a new form of cell death relevant to the medical treatment of cancer. Med Sci (Paris). 30:779–783. 2014.(In French). View Article : Google Scholar : PubMed/NCBI

51 

Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI

52 

Jiang Y, He Y, Liu S and Tao Y: Chromatin remodeling factor lymphoid-specific helicase inhibits ferroptosis through lipid metabolic genes in lung cancer progression. Chin J Cancer. 36:822017. View Article : Google Scholar : PubMed/NCBI

53 

Alvarez SW, Sviderskiy VO, Terzi EM, Papagiannakopoulos T, Moreira AL, Adams S, Sabatini DM, Birsoy K and Possemato R: NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature. 551:639–643. 2017. View Article : Google Scholar : PubMed/NCBI

54 

He L, Vasiliou K and Nebert DW: Analysis and update of the human solute carrier (SLC) gene superfamily. Hum Genomics. 3:195–206. 2009. View Article : Google Scholar : PubMed/NCBI

55 

Sehm T, Rauh M, Wiendieck K, Buchfelder M, Eyüpoglu IY and Savaskan NE: Temozolomide toxicity operates in a xCT/SLC7a11 dependent manner and is fostered by ferroptosis. Oncotarget. 7:74630–74647. 2016. View Article : Google Scholar : PubMed/NCBI

56 

Jiang L: p53 promotes ferroptosis during ROS stress to suppress tumorigenesis. Cancer Dis. 5:4652015. View Article : Google Scholar

57 

Ji XJ, Qian J, Rahman J, Harris B, Hoeksema MD, Chen H, Eisenberg R and Young J: Abstract A10: SLC7A11 contributes to the pathogenesis of lung cancer. Mol Cancer Res. 14:A102016. View Article : Google Scholar

Related Articles

Journal Cover

June 2019
Volume 17 Issue 6

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Yu, H., Han, Z., Xu, Z., An, C., Xu, L., & Xin, H. (2019). RNA sequencing uncovers the key long non‑coding RNAs and potential molecular mechanism contributing to XAV939‑mediated inhibition of non‑small cell lung cancer. Oncology Letters, 17, 4994-5004. https://doi.org/10.3892/ol.2019.10191
MLA
Yu, H., Han, Z., Xu, Z., An, C., Xu, L., Xin, H."RNA sequencing uncovers the key long non‑coding RNAs and potential molecular mechanism contributing to XAV939‑mediated inhibition of non‑small cell lung cancer". Oncology Letters 17.6 (2019): 4994-5004.
Chicago
Yu, H., Han, Z., Xu, Z., An, C., Xu, L., Xin, H."RNA sequencing uncovers the key long non‑coding RNAs and potential molecular mechanism contributing to XAV939‑mediated inhibition of non‑small cell lung cancer". Oncology Letters 17, no. 6 (2019): 4994-5004. https://doi.org/10.3892/ol.2019.10191