Open Access

PAX3 is a biomarker and prognostic factor in melanoma: Database mining

  • Authors:
    • Yong Liu
    • Shengnan Cui
    • Wenbin Li
    • Yiding Zhao
    • Xiaoning Yan
    • Jianqin Xu
  • View Affiliations

  • Published online on: March 18, 2019     https://doi.org/10.3892/ol.2019.10155
  • Pages: 4985-4993
  • Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Paired box 3 (PAX3) is a transcription factor and critical regulator of pigment cell development during embryonic development. However, while there have been several studies on PAX3, its expression patterns and precise role remain to be clarified. The present study is an in‑depth computational study of tumor‑associated gene information, with specific emphasis on the expression of PAX3 in melanoma, using Oncomine along with an investigation of corresponding expression profiles in an array of cancer cell lines through Cancer Cell Line Encyclopedia analysis. Based on Kaplan‑Meier analysis, the prognostic value of high PAX3 expression in tissues from patients with melanoma compared with normal tissues was assessed. PAX3 was more highly expressed in male patients with melanoma compared with female patients with melanoma. Using Oncomine and Coexpedia analysis, it was demonstrated that PAX3 expression was clearly associated with SRY‑box 10 expression. The survival analysis results revealed that high PAX3 mRNA expression was associated with worse survival rates in patients with melanoma. These results suggested that PAX3 may be a biomarker and essential prognostic factor for melanoma, and provided an important theoretical basis for the development of melanoma treatments.

References

1 

Little EG and Eide MJ: Update on the current state of melanoma incidence. Dermatol Clin. 30:355–361. 2012. View Article : Google Scholar : PubMed/NCBI

2 

Buzaid AC and Atkins M: Practical guidelines for the management of biochemotherapy-related toxicity in melanoma. Clin Cancer Res. 7:2611–2619. 2001.PubMed/NCBI

3 

Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T and Thun MJ: Cancer statistics, 2008. CA Cancer J Clin. 58:71–96. 2008. View Article : Google Scholar : PubMed/NCBI

4 

Robson EJ, He SJ and Eccles MR: A PANorama of PAX genes in cancer and development. Nat Rev Cancer. 6:52–62. 2006. View Article : Google Scholar : PubMed/NCBI

5 

Corry GN and Underhill DA: Pax3 target gene recognition occurs through distinct modes that are differentially affected by disease-associated mutations. Pigment Cell Res. 18:427–38. 2005.PubMed/NCBI

6 

Chalepakis G and Gruss P: Identification of DNA recognition sequences for the Pax3 paired domain. Gene. 162:267–270. 1995. View Article : Google Scholar : PubMed/NCBI

7 

Chalepakis G, Jones FS, Edelman GM and Gruss P: Pax-3 contains domains for transcription activation and transcription inhibition. Proc Natl Acad Sci USA. 91:12745–12749. 1994. View Article : Google Scholar : PubMed/NCBI

8 

Epstein DJ, Vogan KJ, Trasler DG and Gros P: A mutation within intron 3 of the Pax-3 gene produces aberrantly spliced mRNA transcripts in the splotch (Sp) mouse mutant. Proc Natl Acad Sci USA. 90:532–536. 1993. View Article : Google Scholar : PubMed/NCBI

9 

Medic S, Rizos H and Ziman M: Differential PAX3 functions in normal skin melanocytes and melanoma cells. Biochem Biophys Res Commun. 411:832–837. 2011. View Article : Google Scholar : PubMed/NCBI

10 

Barber TD, Barber MC, Cloutier TE and Friedman TB: PAX3 gene structure, alternative splicing and evolution. Gene. 237:311–319. 1999. View Article : Google Scholar : PubMed/NCBI

11 

Barr FG, Fitzgerald JC, Ginsberg JP, Vanella ML, Davis RJ and Bennicelli JL: Predominant expression of alternative PAX3 and PAX7 forms in myogenic and neural tumor cell lines. Cancer Res. 59:5443–5448. 1999.PubMed/NCBI

12 

Takeuchi H, Morton DL, Kuo C, Turner RR, Elashoff D, Elashoff R, Taback B, Fujimoto A and Hoon DS: Prognostic significance of molecular upstaging of paraffin embedded sentinel lymph nodes in melanoma patients. J Clin Oncol. 22:2671–2680. 2004. View Article : Google Scholar : PubMed/NCBI

13 

Galibert MD, Yavuzer U, Dexter TJ and Goding CR: Pax3 and regulation of the melanocyte-specific tyrosinase-related protein-1 promoter. J Biol Chem. 274:26894–26900. 1999. View Article : Google Scholar : PubMed/NCBI

14 

Reid AL, Millward M, Pearce R, Lee M, Frank MH, Ireland A, Monshizadeh L, Rai T, Heenan P, Medic S, et al: Markers of circulating tumour cells in the peripheral blood of patients with melanoma correlate with disease recurrence and progression. Br J Dermatol. 168:85–92. 2013. View Article : Google Scholar : PubMed/NCBI

15 

Kubic JD, Little EC, Lui JW, Iizuka T and Lang D: PAX3 and ETS1 synergistically activate MET expression in melanoma cells. Oncogene. 34:4964–4974. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Kubic JD, Lui JW, Little EC, Ludvik AE, Konda S, Salgia R, Aplin AE and Lang D: PAX3 and FOXD3 promote CXCR4 expression in melanoma. J Biol Chem. 290:21901–21914. 2015. View Article : Google Scholar : PubMed/NCBI

17 

Cao J, Dai X, Wan L, Wang H, Zhang J, Goff PS, Sviderskaya EV, Xuan Z, Xu Z, Xu X, et al: The E3 ligase APC/C(Cdh1) promotes ubiquitylation-mediated proteolysis of PAX3 to suppress melanocyte proliferation and melanoma growth. Sci Signal. 8:ra872015. View Article : Google Scholar : PubMed/NCBI

18 

Iyengar AS, Miller PJ, Loupe JM and Hollenbach AD: Phosphorylation of PAX3 contributes to melanoma phenotypes by affecting proliferation, invasion, and transformation. Pigment Cell Melanoma Res. 27:846–848. 2014. View Article : Google Scholar : PubMed/NCBI

19 

Haqq C, Nosrati M, Sudilovsky D, Crothers J, Khodabakhsh D, Pulliam BL, Federman S, Miller JR III, Allen RE, Singer MI, et al: The gene expression signatures of melanoma progression. Proc Natl Acad Sci USA. 102:6092–6097. 2005. View Article : Google Scholar : PubMed/NCBI

20 

Riker AI, Enkemann SA, Fodstad O, Liu S, Ren S, Morris C, Xi Y, Howell P, Metge B, Samant RS, et al: The gene expression profiles of primary and metastatic melanoma yields a transition point of tumor progression and metastasis. BMC Med Genomics. 1:132008. View Article : Google Scholar : PubMed/NCBI

21 

Talantov D, Mazumder A, Yu JX, Briggs T, Jiang Y, Backus J, Atkins D and Wang Y: Novel genes associated with malignant melanoma but not benign melanocytic lesions. Clin Cancer Res. 11:7234–7242. 2005. View Article : Google Scholar : PubMed/NCBI

22 

Wagner KW, Punnoose EA, Januario T, Lawrence DA, Pitti RM, Lancaster K, Lee D, von Goetz M, Yee SF, Totpal K, et al: Death-receptor O-glycosylation controls tumor-cell sensitivity to the proapoptotic ligand Apo2L/TRAIL. Nat Med. 13:1070–1077. 2007. View Article : Google Scholar : PubMed/NCBI

23 

Pratilas CA, Taylor BS, Ye Q, Viale A, Sander C, Solit DB and Rosen N: (V600E)BRAF is associated with disabled feedback inhibition of RAF-MEK signaling and elevated transcriptional output of the pathway. Proc Natl Acad Sci USA. 106:4519–4524. 2009. View Article : Google Scholar : PubMed/NCBI

24 

Xu L, Shen SS, Hoshida Y, Subramanian A, Ross K, Brunet JP, Wagner SN, Ramaswamy S, Mesirov JP and Hynes RO: Gene expression changes in an animal melanoma model correlate with aggressiveness of human melanoma metastases. Mol Cancer Res. 6:760–769. 2008. View Article : Google Scholar : PubMed/NCBI

25 

Shain AH and Bastian BC: From melanocytes to melanomas. Nat Rev Cancer. 16:345–358. 2016. View Article : Google Scholar : PubMed/NCBI

26 

Luke JJ, Flaherty KT, Ribas A and Long GV: Targeted agents and immunotherapies: Optimizing outcomes in melanoma. Nat Rev Clin Oncol. 14:463–482. 2017. View Article : Google Scholar : PubMed/NCBI

27 

Amann VC, Ramelyte E, Thurneysen S, Pitocco R, Bentele-Jaberg N, Goldinger SM, Dummer R and Mangana J: Developments in targeted therapy in melanoma. Eur J Surg Oncol. 43:581–593. 2017. View Article : Google Scholar : PubMed/NCBI

28 

Christiansen SA, Khan S and Gibney GT: Targeted therapies in combination with immune therapies for the treatment of metastatic melanoma. Cancer J. 23:59–62. 2017. View Article : Google Scholar : PubMed/NCBI

29 

Lang D, Lu MM, Huang L, Engleka KA, Zhang M, Chu EY, Lipner S, Skoultchi A, Millar SE and Epstein JA: Pax3 functions at a nodal point in melanocyte stem cell differentiation. Nature. 433:884–887. 2005. View Article : Google Scholar : PubMed/NCBI

30 

Bailey CM, Morrison JA and Kulesa PM: Melanoma revives an embryonic migration program to promote plasticity and invasion. Pigment Cell Melanoma Res. 25:573–583. 2012. View Article : Google Scholar : PubMed/NCBI

31 

Medic S and Ziman M: PAX3 expression in normal skin melanocytes and melanocytic lesions (naevi and melanomas). PLoS One. 5:e99772010. View Article : Google Scholar : PubMed/NCBI

32 

Hathaway-Schrader JD, Doonan BP, Hossain A, Radwan FFY, Zhang L and Haque A: Autophagy-dependent crosstalk between GILT and PAX-3 influences radiation sensitivity of human melanoma cells. J Cell Biochem. 119:2212–2221. 2018. View Article : Google Scholar : PubMed/NCBI

33 

Wang Q, Kumar S, Slevin M and Kumar P: Functional analysis of alternative isoforms of the transcription factor PAX3 in melanocytes in vitro. Cancer Res. 66:8574–8580. 2006. View Article : Google Scholar : PubMed/NCBI

34 

Liu F, Cao J, Lv J, Dong L, Pier E, Xu GX, Wang RA, Xu Z, Goding C and Cui R: TBX2 expression is regulated by PAX3 in the melanocyte lineage. Pigment Cell Melanoma Res. 26:67–77. 2013. View Article : Google Scholar : PubMed/NCBI

35 

Liu F, Cao J, Wu J, Sullivan K, Shen J, Ryu B, Xu Z, Wei W and Cui R: Stat3-targeted therapies overcome the acquired resistance to vemurafenib in melanomas. J Invest Dermatol. 133:2041–2049. 2013. View Article : Google Scholar : PubMed/NCBI

36 

Smith MP, Ferguson J, Arozarena I, Hayward R, Marais R, Chapman A, Hurlstone A and Wellbrock C: Effect of SMURF2 targeting on susceptibility to MEK inhibitors in melanoma. J Natl Cancer Inst. 105:33–46. 2013. View Article : Google Scholar : PubMed/NCBI

37 

Bartlett D, Boyle GM, Ziman M and Medic S: Mechanisms contributing to differential regulation of PAX3 downstream target genes in normal human epidermal melanocytes versus melanoma cells. PLoS One. 10:e01241542015. View Article : Google Scholar : PubMed/NCBI

38 

He S, Li CG, Slobbe L, Glover A, Marshall E, Baguley BC and Eccles MR: PAX3 knockdown in metastatic melanoma cell lines does not reduce MITF expression. Melanoma Res. 21:24–34. 2011. View Article : Google Scholar : PubMed/NCBI

39 

He SJ, Stevens G, Braithwaite AW and Eccles MR: Transfection of melanoma cells with antisense PAX3 oligonucleotides additively complements cisplatin-induced cytotoxicity. Mol Cancer Ther. 4:996–1003. 2005. View Article : Google Scholar : PubMed/NCBI

40 

Scholl FA, Kamarashev J, Murmann OV, Geertsen R, Dummer R and Schäfer BW: PAX3 is expressed in human melanomas and contributes to tumor cell survival. Cancer Res. 61:823–826. 2001.PubMed/NCBI

41 

Autilio C, Paolillo C, Lavieri MM, Pocino K, De Paolis E, Di Stasio E, Marchetti P, Gian Carlo CA and Capoluongo E: PAX3d mRNA over 2.76 copies/µl in the bloodstream predicts cutaneous malignant melanoma relapse. Oncotarget. 8:85479–85491. 2017. View Article : Google Scholar : PubMed/NCBI

42 

Wang Q, Fang WH, Krupinski J, Kumar S, Slevin M and Kumar P: Pax genes in embryogenesis and oncogenesis. J Cell Mol Med. 12:2281–2294. 2008. View Article : Google Scholar : PubMed/NCBI

43 

Bondurand N, Pingault V, Goerich DE, Lemort N, Sock E, Le Caignec C, Wegner M and Goossens M: Interaction among SOX10, PAX3 and MITF, three genes altered in Waardenburg syndrome. Hum Mol Genet. 9:1907–1917. 2000. View Article : Google Scholar : PubMed/NCBI

44 

Potterf SB, Furumura M, Dunn KJ, Arnheiter H and Pavan WJ: Transcription factor hierarchy in Waardenburg syndrome: Regulation of MITF expression by SOX10 and PAX3. Hum Genet. 107:1–6. 2000. View Article : Google Scholar : PubMed/NCBI

45 

Watanabe A, Takeda K, Ploplis B and Tachibana M: Epistatic relationship between Waardenburg syndrome genes MITF and PAX3. Nat Genet. 18:283–286. 1998. View Article : Google Scholar : PubMed/NCBI

46 

Mascarenhas JB, Littlejohn EL, Wolsky RJ, Young KP, Nelson M, Salgia R and Lang D: PAX3 and SOX10 activate MET receptor expression in melanoma. Pigment Cell Melanoma Res. 23:225–237. 2010. View Article : Google Scholar : PubMed/NCBI

47 

Hou L and Pavan WJ: Transcriptional and signaling regulation in neural crest stem cell-derived melanocyte development: Do all roads lead to Mitf? Cell Res. 18:1163–1176. 2008. View Article : Google Scholar : PubMed/NCBI

48 

Otręba M, Miliński M, Buszman E, Wrześniok D and Beberok A: Hereditary hypomelanocytoses: The role of PAX3, SOX10, MITF, SNAI2, KIT, EDN3 and EDNRB genes. Postepy Hig Med Dosw (Online). 67:1109–1118. 2013.(In Polish). View Article : Google Scholar : PubMed/NCBI

49 

Pingault V, Ente D, Dastot-Le Moal F, Goossens M, Marlin S and Bondurand N: Review and update of mutations causing Waardenburg syndrome. Hum Mutat. 31:391–406. 2010. View Article : Google Scholar : PubMed/NCBI

50 

Otręba M, Rok J, Buszman E and Wrześniok D: Regulation of melanogenesis: The role of cAMP and MITF. Postepy Hig Med Dosw (Online). 66:33–40. 2012.(In Polish). PubMed/NCBI

51 

Lin JY and Fisher DE: Melanocyte biology and skin pigmentation. Nature. 445:843–850. 2007. View Article : Google Scholar : PubMed/NCBI

52 

Li WQ, Cho E, Weinstock MA, Mashfiq H and Qureshi AA: Epidemiological assessments of skin outcomes in the nurses' health studies. Am J Public Health. 106:1677–1683. 2016. View Article : Google Scholar : PubMed/NCBI

53 

Zhang M, Qureshi AA, Geller AC, Frazier L, Hunter DJ and Han J: Use of tanning beds and incidence of skin cancer. J Clin Oncol. 30:1588–1593. 2012. View Article : Google Scholar : PubMed/NCBI

54 

Li WQ, Qureshi AA, Ma J, Goldstein AM, Giovannucci EL, Stampfer MJ and Han J: Personal history of prostate cancer and increased risk of incident melanoma in the United States. J Clin Oncol. 31:4394–4399. 2013. View Article : Google Scholar : PubMed/NCBI

55 

Nair-Shalliker V, Egger S, Chrzanowska A, Mason R, Waite L, Le Couteur D, Seibel MJ, Handelsman DJ, Cumming R, Smith DP and Armstrong BK: Associations between sun sensitive pigmentary genes and serum prostate specific antigen levels. PLoS One. 13:e01938932018. View Article : Google Scholar : PubMed/NCBI

56 

Chia SE, Wong KY, Cheng C, Lau W and Tan PH: Sun exposure and the risk of prostate cancer in the singapore prostate cancer study: A case-control study. Asian Pac J Cancer Prev. 13:3179–3185. 2012. View Article : Google Scholar : PubMed/NCBI

57 

Nair-Shalliker V, Smith DP, Egger S, Hughes AM, Kaldor JM, Clements M, Kricker A and Armstrong BK: Sun exposure may increase risk of prostate cancer in the high UV environment of New South Wales, Australia: A case-control study. Int J Cancer. 131:E726–E732. 2012. View Article : Google Scholar : PubMed/NCBI

58 

Bonilla C, Gilbert R, Kemp JP, Timpson NJ, Evans DM, Donovan JL, Hamdy FC, Neal DE, Fraser WD, Davey SG, et al: Using genetic proxies for lifecourse sun exposure to assess the causal relationship of sun exposure with circulating vitamin d and prostate cancer risk. Cancer Epidemiol Biomarkers Prev. 22:597–606. 2013. View Article : Google Scholar : PubMed/NCBI

59 

Kocarnik JM, Park SL, Han J, Dumitrescu L, Cheng I, Wilkens LR, Schumacher FR, Kolonel L, Carlson CS, Crawford DC, et al: Replication of associations between GWAS SNPs and melanoma risk in the Population Architecture Using Genomics and Epidemiology (PAGE) Study. J Invest Dermatol. 134:2049–2052. 2014. View Article : Google Scholar : PubMed/NCBI

60 

Hernando B, Ibarrola-Villava M, Fernandez LP, Peña-Chilet M, Llorca-Cardeñosa M, Oltra SS, Alonso S, Boyano MD, Martinez-Cadenas C and Ribas G: Sex-specific genetic effects associated with pigmentation, sensitivity to sunlight, and melanoma in a population of Spanish origin. Biol Sex Differ. 7:172016. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 17 Issue 6

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Liu, Y., Cui, S., Li, W., Zhao, Y., Yan, X., & Xu, J. (2019). PAX3 is a biomarker and prognostic factor in melanoma: Database mining. Oncology Letters, 17, 4985-4993. https://doi.org/10.3892/ol.2019.10155
MLA
Liu, Y., Cui, S., Li, W., Zhao, Y., Yan, X., Xu, J."PAX3 is a biomarker and prognostic factor in melanoma: Database mining". Oncology Letters 17.6 (2019): 4985-4993.
Chicago
Liu, Y., Cui, S., Li, W., Zhao, Y., Yan, X., Xu, J."PAX3 is a biomarker and prognostic factor in melanoma: Database mining". Oncology Letters 17, no. 6 (2019): 4985-4993. https://doi.org/10.3892/ol.2019.10155